Visual Document Authentication Using Human-Recognizable Watermarks

  • Igor Fischer
  • Thorsten Herfet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3995)


Digital signatures and message authentication codes are well known methods for ensuring message integrity. However, they rely on computations which are too hard to be performed by humans and are instead done on computers. Trusting a digital signature implies trusting the computer which produced/checked it. Often, this trust cannot be taken for granted. This paper presents a method for visual authentication of large messages which relies on embedding a human-recognizable watermark and needs practically no computational power on the receiver side. Also, using a simple challenge-response mechanism is proposed to prevent attackers from obtaining signatures without author’s knowledge.


Smart Card Message Authentication Code Trusted Platform Module Trust Computing Visual Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Schneier, B.: Applied Cryptography. John Wiley & Sons, Inc., Chichester (1996)MATHGoogle Scholar
  3. 3.
    Trusted Computing Group: Home page (2005)Google Scholar
  4. 4.
    Pearson, S. (ed.): Trusted Computing Platforms. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  5. 5.
    Fried, I.: Microsoft: ‘Trusted Windows’ still coming, trust us (2005)Google Scholar
  6. 6.
    Slater, D.: Microsoft trusted computing updates (2005)Google Scholar
  7. 7.
    Chiachiarella, F., Fasting, U., Fey, T., Leppler, S., Lux, G., Lubb, P., Moser, A., Otten, G., Schlattmann, J., Schumann, S., Schweizer, L., Souren, F.J.: Das Risiko Trusted Computing für die deutsche Versicherungswirtschaft. Schriftenreihe des Betriebswirtschaftlichen Institutes des GDV 13 (2004)Google Scholar
  8. 8.
    Trusted Computing Group: Trusted Computing Group Clarifications for the German Insurance Industry Association paper The Threat, Trusted Computing, to the German Insurance Industry (2005)Google Scholar
  9. 9.
    TCG Best Practices Committee: Design, implementation, and usage principles for TPM-based platforms (2005)Google Scholar
  10. 10.
    Russinovich, M.: Sony, rootkits and digital rights management gone too far (2005)Google Scholar
  11. 11.
    Naor, M., Pinkas, B.: Visual Authentication and Identification. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Aucsmith, D.: Tamper resistant software: An implementation. In: Proceedings of the First International Workshop on Information Hiding, pp. 317–333. Springer, London (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Igor Fischer
    • 1
  • Thorsten Herfet
    • 1
  1. 1.Saarland UniversitySaarbrckenGermany

Personalised recommendations