Do You Trust Your Recommendations? An Exploration of Security and Privacy Issues in Recommender Systems

  • Shyong K. “Tony” Lam
  • Dan Frankowski
  • John Riedl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3995)


Recommender systems are widely used to help deal with the problem of information overload. However, recommenders raise serious privacy and security issues. The personal information collected by recommenders raises the risk of unwanted exposure of that information. Also, malicious users can bias or sabotage the recommendations that are provided to other users. This paper raises important research questions in three topics relating to exposure and bias in recommender systems: the value and risks of the preference information shared with a recommender, the effectiveness of shilling attacks designed to bias a recommender, and the issues involved in distributed or peer-to-peer recommenders. The goal of the paper is to bring these questions to the attention of the information and communication security community, to invite their expertise in addressing them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: CSCW 1994: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina, United States, pp. 175–186. ACM Press, New York (1994)CrossRefGoogle Scholar
  2. 2.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW 2001: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM Press, Hong Kong (2001)Google Scholar
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 734–749 (2005)Google Scholar
  4. 4.
    Ackerman, M.S., Cranor, L.F., Reagle, J.: Privacy in e-commerce: Examining user scenarios and privacy preferences. In: ACM Conference on Electronic Commerce, pp. 1–8 (1999)Google Scholar
  5. 5.
    Ali, K., van Stam, W.: TiVo: Making show recommendations using a distributed collaborative filtering architecture. In: KDD 2004: Knowledge Discovery and Data Mining Conference, Seattle, Washington, USA, pp. 394–401 (2004)Google Scholar
  6. 6.
    Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A., Karypis, G.: Privacy risks in recommender systems. IEEE Internet Computing 5, 54–62 (2001)CrossRefGoogle Scholar
  7. 7.
    Lam, S.K., Riedl, J.: Privacy, shilling, and the value of information in recommender systems. In: Proceedings of User Modeling Workshop on Privacy-Enhanced Personalization, pp. 85–92 (2005)Google Scholar
  8. 8.
    Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized perturbation techniques. In: ICDM 2003: Proceedings of the Third IEEE International Conference on Data Mining (2003)Google Scholar
  9. 9.
    Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Privacy-enhanced collaborative filtering. In: Proceedings of User Modeling Workshop on Privacy-Enhanced Personalization, pp. 75–83 (2005)Google Scholar
  10. 10.
    Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 557–570 (2002)Google Scholar
  11. 11.
    Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Aygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. In: SIGMOD 2005: Proceedings of the Conference on the Management of Data (2005)Google Scholar
  12. 12.
    Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach. In: UAI 2000: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 473–480. Morgan Kaufmann Publishers Inc, Stanford (2000)Google Scholar
  13. 13.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S., Konstan, J.A., Riedl, J.: Getting to know you: Learning new user preferences in recommender systems. In: Proceedings of the 2002 International Conference on Intelligent User Interfaces, San Francisco, CA, pp. 127–134 (2002)Google Scholar
  14. 14.
    McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 178–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Application of dimensionality reduction in recommender system – a case study. In: ACM WebKDD 2000 Web Mining for E-Commerce Workshop, Boston, MA, USA (2000)Google Scholar
  16. 16.
    Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: WWW 2004: Proceedings of the 13th International Conference on World Wide Web, pp. 393–402. ACM Press, New York (2004)Google Scholar
  17. 17.
    Burke, R., Mobasher, B., Zabicki, R., Bhaumik, R.: Identifying attack models for secure recommendation. In: ACM IUI Workshop: Beyond Personalization (2005)Google Scholar
  18. 18.
    Douceur, J.: The Sybil attack. In: Proceedings of the 1st International Workshop on Peer-to-Peer Systems (2002)Google Scholar
  19. 19.
    Dellarocas, C.: Immunizing online reputation reporting systems against unfair ratings and discriminatory behavior. In: ACM Conference on Electronic Commerce, pp. 150–157 (2000)Google Scholar
  20. 20.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for reputation management in P2P networks. In: WWW 2003: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM Press, New York (2003)Google Scholar
  21. 21.
    Friedman, E., Resnick, P.: The social cost of cheap pseudonyms. In: Journal of Economics and Management Strategy (1999)Google Scholar
  22. 22.
    O’Donovan, J., Smyth, B.: Is trust robust?: An analysis of trust-based recommendation. In: IUI 2006: Proceedings of the 11th International Conference on Intelligent User Interfaces, pp. 101–108. ACM Press, New York (2006)Google Scholar
  23. 23.
    von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using hard AI problems for security. In: EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  24. 24.
    Canny, J.: Collaborative filtering with privacy via factor analysis. In: SIGIR 2002: Proceedings of the 25th International ACM Conference on Research and Development in Information Retrieval, Tampere, Finland, pp. 238–245. ACM Press, New York (2002)Google Scholar
  25. 25.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the 10th Conference of Information and Knowledge Management (2001)Google Scholar
  26. 26.
    Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender system. ACM Transactions on Information Systems 22, 437–476 (2004)CrossRefGoogle Scholar
  27. 27.
    Clarke, I., Hong, T.W., Miller, S.G., Sandberg, O., Wiley, B.: Protecting free expression online with Freenet. IEEE Internet Computing (2002)Google Scholar
  28. 28.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup service for internet applications. In: Proceedings of the 2001 ACM SIGCOMM Conference, pp. 149–160 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shyong K. “Tony” Lam
    • 1
  • Dan Frankowski
    • 1
  • John Riedl
    • 1
  1. 1.GroupLens Research, Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations