An Automated Multi-component Approach to Extracting Entity Relationships from Database Requirement Specification Documents

  • Siqing Du
  • Douglas P. Metzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3999)


This paper describes a natural language system that extracts entity relationship diagram components from natural language database design documents. The system is a fully integrated composite of existing, publicly available components including a parser, WordNet and Google web corpus search facilities, and a novel rule-based tuple-extraction process. The system differs from previous approaches in being fully automatic (as opposed to approaches requiring human disambiguation or other interaction) and in providing a higher level of performance than previously reported results.


Translation Rule Syntactic Parser General Natural Language Entity Relationship Natural Language Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagui, S., Earp, R.: Database Design Using Entity Relationship Diagrams. Auerbach, Boca Raton (2003)zbMATHGoogle Scholar
  2. 2.
    Chen, P.: English Sentence Structure and Entity Relationship Diagrams. Information Science 1(1), 127–149 (1983)CrossRefGoogle Scholar
  3. 3.
    Buchholz, E., Cyriaks, H., Düsterhöft, A., Mehlan, H., Thalheim, B.: Applying a Natural Language Dialogue Tool for Designing Databases. In: Proceedings of the First International Workshop on Applications of Natural Language to Databases (NLDB 1995) (1995)Google Scholar
  4. 4.
    Omar, N., Hanna, P., Mc Kevitt, P.: Heuristics-Based Entity-Relationship Modelling through Natural Language Processing. In: McGinty, L., Crean, B. (eds.) Proc. of the Fifteenth Irish Conference on Artificial Intelligence and Cognitive Science (AICS 2004), pp. 302–313 (2004)Google Scholar
  5. 5.
    Bouzeghoub, M., Gardarin, G., Metais, E.: Database Design Tools: An Expert Sys-tem Approach. In: Very Large Data Base Conference (1985)Google Scholar
  6. 6.
    Black, W.J.: Acquisition of Conceptual Data Models from Natural Language Descriptions. In: 3rd Conf. of the European chapter of ACM, Danemark (1987)Google Scholar
  7. 7.
    Tjoa, A.M., Berger, L.: Transformations of Requirements Specifications Expressed in Natural Language into an Eer Model. In: Proceeding of the 12th International Conference on Approach, Airlington, Texas, USA, pp. 206–217 (1993)Google Scholar
  8. 8.
    Buchholz, E., Düsterhöft, A.: Using Natural Language for Database Design. In: Working Notes of the KI 1994 Workshop: Reasoning about structured Objects: Knowledge Representation Meets Databases (KRDB 1994), Saarbrueken, Germany (1994) Google Scholar
  9. 9.
    Gomez, F., Segami, C., Delaune, C.: A System for the Semiautomatic Generation of Er Models from Natural Language Specifications. Data and Knowledge Engineering 29(1), 57–81 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sleator, K.D., Temperley, D.: Parsing English with a Link Grammar. In: Third International Workshop on Parsing Technologies (1991)Google Scholar
  11. 11.
    Szolovits, P.: Adding a Medical Lexicon to an English Parser. In: Proc. AMIA 2003 Annual Symposium (2003)Google Scholar
  12. 12.
    Grinberg, D., Lafferty, J., Sleator, D.: A Robust Parsing Algorithm for Link Grammars. In: Proceedings of the Fourth International Workshop on Parsing Technologies, Prague (1995)Google Scholar
  13. 13.
    Ding, J., Berleant, D., Xu, J., Fulmer, W.A.: Extracting Biochemical Interactions from Medline Using a Link Grammar Parser. In: 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2003) (2003)Google Scholar
  14. 14.
    Madhyastha, H.V., Balakrishnan, N., Ramakrishnan, K.R.: Event Information Extraction Using Link Grammar. In: 13th International WorkShop on Research Issues in Data Engineering: Multi-lingual Information Management (RIDE 2003) (2003)Google Scholar
  15. 15.
    Rinaldi, F., Dowdall, J., Hess, M., Mollá, D., Schwitter, R.: Towards Answer Extraction: An Application to Technical Domains. In: Proceedings of the 15th European Conference on Artificial Intelligence. IOS Press, Amsterdam (2002)Google Scholar
  16. 16.
    Metzler, P.D., Haas, W.S., Cosic, L.C., Wheeler, H.L.: Constituent Object Parsing for Information Retrieval and Similar Text Processing Problems. Journal of the America Society for Information Science 40(6), 398–423 (1989)CrossRefGoogle Scholar
  17. 17.
    Moulton, J., Robinson, M.G.: The Organization of Language, p. 400. Cambridge University Press, Cambridge (1981)CrossRefGoogle Scholar
  18. 18.
    Christiane, F.: Wordnet: An Electronic Lexical Database, vol. xxii, p. 423. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  19. 19.
    Keller, F.: Mirella Lapatay: Using the Web to Obtain Frequencies for Unseen Bigrams. Computational Linguistics 2003 29(3), 459–484 (2003)CrossRefGoogle Scholar
  20. 20.
    Volk, M.: Scaling Up. Using the WWW to Resolve PP Attachment Ambiguities. In: Proc.of Konvens 2000, pp. 151–156. VDE Verlag, Sprachkommunikation (2000)Google Scholar
  21. 21.
    Volk, M.: Exploiting the WWW as a Corpus to Resolve PP Attachment Ambiguities. In: Proc. of Corpus Linguistics 2001, Lancaster (2001)Google Scholar
  22. 22.
    Calvo, H., Gelbukh, A.: Improving prepositional phrase attachment disambiguation using the web as corpus. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 604–610. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Chantree, F., Kilgarriff, A., De Roeck, A., Willis, D.: Using a Distributional Thesaurus to Resolve Coordination Ambiguities. Technical Report, Department of Computing Faculty of Mathematics and Computing,The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom (2005)Google Scholar
  24. 24.
    Lenat, B.D., Guha, R.V.: Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley Publishing Company, Inc., Reading (1990)Google Scholar
  25. 25.
    Liu, H., Singh, P.: Conceptnet: A Practical Commonsense Reasoning Toolkit. BT Technology Journal (in submission, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Siqing Du
    • 1
  • Douglas P. Metzler
    • 1
  1. 1.School of Information SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations