Advertisement

On the Least Cost for Proximity Searching in Metric Spaces

  • Karina Figueroa
  • Edgar Chávez
  • Gonzalo Navarro
  • Rodrigo Paredes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)

Abstract

Proximity searching consists in retrieving from a database those elements that are similar to a query. As the distance is usually expensive to compute, the goal is to use as few distance computations as possible to satisfy queries. Indexes use precomputed distances among database elements to speed up queries. As such, a baseline is AESA, which stores all the distances among database objects, but has been unbeaten in query performance for 20 years. In this paper we show that it is possible to improve upon AESA by using a radically different method to select promising database elements to compare against the query. Our experiments show improvements of up to 75% in document databases. We also explore the usage of our method as a probabilistic algorithm that may lose relevant answers. On a database of faces where any exact algorithm must examine virtually all elements, our probabilistic version obtains 85% of the correct answers by scanning only 10% of the database.

Keywords

Face Image Exact Algorithm Distance Computation Range Query Probabilistic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimension. In: Proc. 5th ACM-SIAM Symposium on Discrete Algorithms (SODA 1994), pp. 573–583 (1994)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  3. 3.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces-index structures for improving the performance of multimedia databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  4. 4.
    Bustos, B., Navarro, G.: Probabilistic proximity search algorithms based on compact partitions. Journal of Discrete Algorithms (JDA) 2(1), 115–134 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chávez, E., Figueroa, K., Navarro, G.: Proximity searching in high dimensional spaces with a proximity preserving order. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 405–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of dimensionality in metric spaces. Information Processing Letters 85(1), 39–46 (2003)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Proximity searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  8. 8.
    Ciaccia, P., Patella, M.: Searching in metric spaces with user-defined and approximate distances. ACM Trans. on Database Systems 27(4), 398–437 (2002)CrossRefGoogle Scholar
  9. 9.
    Clarkson, K.: Nearest neighbor queries in metric spaces. Discrete Computational Geometry 22(1), 63–93 (1999)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete Math 17(1), 134–160 (2003)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Fredriksson, K.: Parallel and memory adaptive metric indexes. Pattern Recognition Letters (to appear)Google Scholar
  12. 12.
    Micó, L., Oncina, J., Carrasco, R.: A fast branch and bound nearest neighbour classifier in metric spaces. Pattern Recognition Letters 17, 731–739 (1996)CrossRefGoogle Scholar
  13. 13.
    Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbor approximating and eliminating search (AESA) with linear preprocessing-time and memory requirements. Pattern Recognition Letters 15, 9–17 (1994)CrossRefGoogle Scholar
  14. 14.
    Navarrete, P., Ruiz-Del-Solar, J.: Analysis and comparison of eigenspace-based face recognition approaches. Int. Journal of Pattern Recognition and Artificial Intelligence 16(7), 817–830 (2002)CrossRefGoogle Scholar
  15. 15.
    Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 298–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing Journal 16(5), 295–306 (1998)CrossRefGoogle Scholar
  17. 17.
    Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recognition Letters 4, 145–157 (1986)CrossRefGoogle Scholar
  18. 18.
    Vilar, J.: Reducing the overhead of the AESA metric-space nearest neighbor searching algorithm. Information Processing Letters 56, 256–271 (1995)CrossRefMathSciNetGoogle Scholar
  19. 19.
    White, D., Jain, R.: Algorithms and strategies for similarity retrieval. Technical Report VCL-96-101, Visual Computing Laboratory, U. of California (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karina Figueroa
    • 1
    • 2
  • Edgar Chávez
    • 1
  • Gonzalo Navarro
    • 2
  • Rodrigo Paredes
    • 2
  1. 1.Universidad MichoacanaMéxico
  2. 2.Center for Web Research, Dept. of Computer ScienceUniversidad de Chile 

Personalised recommendations