Advertisement

Practical Partitioning-Based Methods for the Steiner Problem

  • Tobias Polzin
  • Siavash Vahdati Daneshmand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)

Abstract

Partitioning is one of the basic ideas for designing efficient algorithms, but on \(\mathcal{NP}\)-hard problems like the Steiner problem, straightforward application of the classical partitioning-based paradigms rarely leads to empirically successful algorithms. In this paper, we present two approaches to the Steiner problem based on partitioning. The first uses the fixed-parameter tractability of the problem with respect to a certain width parameter closely related to path-width. The second approach is based on vertex separators and is new in the sense that it uses partitioning to design reduction methods. Integrating these methods into our program package for the Steiner problem accelerates the solution process on many groups of instances and leads to a fast solution of some previously unsolved benchmark instances.

Keywords

Steiner Tree Steiner Tree Problem Split Graph Steiner Minimal Tree Steiner Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)MathSciNetMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Cheng, X., Du, D.-Z. (eds.): Steiner Trees in Industry. Combinatorial Optimization, vol. 11. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  4. 4.
    Duin, C.W.: Preprocessing the Steiner problem in graphs. In: Du, D., Smith, J., Rubinstein, J. (eds.) Advances in Steiner Trees, pp. 173–233. Kluwer, Dordrecht (2000)Google Scholar
  5. 5.
    Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: New bounds from old techniques. J. Algorithms 34(2), 222–250 (2000)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics, vol. 53. North-Holland, Amsterdam (1992)MATHGoogle Scholar
  7. 7.
    Koch, T., Martin, A.: SteinLib (2001), http://elib.zib.de/steinlib
  8. 8.
    Korach, E., Solel, N.: Linear time algorithm for minimum weight Steiner tree in graphs with bounded tree-width. Technical Report 632, Technicon - Israel Institute of Technology, Computer Science Department, Haifa, Israel (1990)Google Scholar
  9. 9.
    Polzin, T., Vahdati Daneshmand, S.: Improved algorithms for the Steiner problem in networks. Discrete Applied Mathematics 112, 263–300 (2001)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Polzin, T., Vahdati Daneshmand, S.: Extending reduction techniques for the Steiner tree problem. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 795–807. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Pönitz, A., Tittmann, P.: Computing network reliability in graphs of restricted pathwidth. Technical report, Hochschule Mittweida (2001)Google Scholar
  12. 12.
    Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken (1998)Google Scholar
  13. 13.
    Salowe, J.S., Warme, D.M.: Thirty-five point rectilinear Steiner minimal trees in a day. Networks 25, 69–87 (1995)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Schakel, L.P.: Personal communication, Faculty of Economics, University of Groningen (2005), http://www.lofar.org/
  15. 15.
    Vahdati Daneshmand, S.: Algorithmic Approaches to the Steiner Problem in Networks. PhD thesis, University of Mannheim (2004), http://bibserv7.bib.uni-mannheim.de/madoc/volltexte/2004/176
  16. 16.
    Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: A computational study. In: Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer, Dordrecht (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tobias Polzin
    • 1
  • Siavash Vahdati Daneshmand
    • 2
  1. 1.HaCon Ingenieurgesellschaft mbHHannoverGermany
  2. 2.Theoretische InformatikUniversität MannheimGermany

Personalised recommendations