Numerical Estimation of the Impact of Interferences on the Localization Problem in Sensor Networks

  • Matthieu Bouget
  • Pierre Leone
  • Jose Rolim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)


In this paper we numerically analyze the impact of interferences on the probability of success of a localization algorithm. This problem is particularly relevant in the context of sensor networks. Actually, our numerical results are relevant even when we do not consider interferences. Moreover, our numerical computations show that the main harmful interferences are the ones occurring between sensors which get localized at the same time and send simultaneously their own location. This is demonstrated by varying the time span of the random waiting time before the emissions. We then observe that the longer the waiting time the closer the curves are to the ones obtained without interferences. Hence, this proves to be an efficient way of reducing the impact of interferences. Moreover, our numerical experiments demonstrate that among the sectors of disk with same area, the one with the smaller radius of emission and larger angle of emission is the more appropriate to the localization algorithm.


Sensor Network Wireless Sensor Network Localization Algorithm Receive Signal Strength Indicator Emission Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Arzhantseva, G., Diaz, J., Petit, J., Rolim, J., Serna, M.J.: Broadcasting on Networks of Sensors Communicating through Directional Antennas. In: International Workshop on Ambient Intelligence Computing, pp. 1–12. CTI Press, Ellinika Grammata (2003)Google Scholar
  3. 3.
    Aspnes, J., Goldenberg, D., Yang, Y.R.: On the Computational Complexity of Sensor Network Localization. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Abramson, N.: The aloha system - another alternative for computer communications. In: Proceedings Fall Joint Comput. Conf., AFIPS Conf., Montvale, NJ, vol. 44, pp. 281–285 (1970)Google Scholar
  5. 5.
    Bollobás, B., Thomason, A.: Threshold functions. Combinatorica 7, 35–38 (1987)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Breu, H., Kirpatrick, D.G.: Unit disk graph recognition is NP-hard. Journal of Computational Geometry 9, 3–24 (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Carleial, A.B., Hellman, M.E.: Bistable behavior of ALOHA-type systems. IEEE Trans. Commun. COM-23, 401–410 (1975)CrossRefGoogle Scholar
  8. 8.
    Diaz, J., Petit, J., Serna, M.: Evaluation of Basic Protocols for Optical Smart Dust Networks. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Dousse, O., Baccelli, F., Thiran, P.: Impact of Interferences on Connectivity in Ad Hoc Networks. In: Proceedings of Infocom, San Francisco (April 2003)Google Scholar
  10. 10.
    Bulusu, N., Heidmann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, Special Issue on Smart Spaces and Environments 7(5), 28–34 (2000)Google Scholar
  11. 11.
    Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124, 2993–3002 (1996)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Friedgut, E.: Hunting for Sharp Threshold. Random Structures Algorithms 26(1-2), 37–51 (2005)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Girod, L., Estrin, D.: Robust range estimation using accoustic and multimodal sensing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) (March 2001)Google Scholar
  14. 14.
    Girod, L., Bychkovskiy, V., Elson, J., Estrin, D.: Locating Tiny Sensors in Time and Space: A Case Study. In: Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD 2002), Freiburg, Germany, september 2002, p. 214 (2002)Google Scholar
  15. 15.
    Glynn, P.W., Hsieh, M.: Confidence Regions for Stochastic Approximation Algorithms. In: Proceedings of the 2002 Winter Simulation Conference, pp. 370–376 (2002)Google Scholar
  16. 16.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inform. Theory 46(2), 288–404 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hajek, B.: Stochastic Approximation Methods for Decentralized Control of Multiaccess Communications. IEEE Transactions on Information Theory IT-31(2) (March 1985)Google Scholar
  18. 18.
    Kiefer, J., Wolfowitz, J.: Stochastic Estimation of the Maximum of a Regression Function. Ann. Math. Statist. 23, 462–466 (1952)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Leone, P., Albuquerque, P., Mazza, C., Rolim, J.: A Framework for Probabilistic Numerical Evaluation of Sensor Networks. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 341–353. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Leone, P., Nikoletseas, S., Rolim, J.: An adaptative Blind Algorithm for Energy Balanced Data Propagation in Wireless Sensor Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Leopold, M., Dydensborg, M.B., Bonnet, P.: Bluetooth and Sensor Networks: A Reality Check. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems (SenSys 2003), Los Angeles, Clifornia, USA, November 2003, pp. 103–113 (2003)Google Scholar
  22. 22.
    Nevel’son, M.B., Has’minskii, R.Z.: Stochastic Approximation and Recursive Estimation. Translation of Mathematical Monographs, vol. 47. American Math. Soc. (1976)Google Scholar
  23. 23.
    Penrose, M.: Random Geometric Graphs, Oxford Studies in Probability 5 (2003)Google Scholar
  24. 24.
    Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Segal, A.: Recursive estimation from discrete-time point process. IEEE transactions on Information Theory IT-22, 421–431 (1976)Google Scholar
  26. 26.
    Savvides, A., Han, C., Strivastava, M.B.: Dynamic fine-grained localization in Ad-Hoc networks of sensors. In: Proceedings of MOBICOM 2001, pp. 166–179 (2001)Google Scholar
  27. 27.
    Srivastava, M.: Part II: Sensor Node Platforms & Energy Issues. In: Tutorial on Wireless Sensor Networks, Mobicom 2002 (2002), Avalaible at:
  28. 28.
    Srivastava, M.: Part III: Time & Space Problems in Sensor Networks. In: Tutorial on Wireless Sensor Networks, Mobicom 2002 (2002), Avalaible at:
  29. 29.
    Stupp, G., Sidi, M.: The Expected Uncertainty of Range Free Localization Ptotocols in Sensors Networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Talagrand, M.: On Russo’s Approximate Zero-One Law. The Annals of Probability 22(3), 1576–1587 (1994)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Venter, J.H.: An extension of the Robbins-Monro procedure. Ann. Math. Stat. 38, 181–190 (1967)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthieu Bouget
    • 1
  • Pierre Leone
    • 1
  • Jose Rolim
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaSwitzerland

Personalised recommendations