Advertisement

Algorithms for Wireless Sensor Networks: Design, Analysis and Experimental Evaluation

  • Sotiris Nikoletseas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4007)

Abstract

The efficient and robust realization of wireless sensor networks is a challenging technological and algorithmic task, because of the unique characteristics and severe limitations of these devices. This talk presents representative algorithms for important problems in wireless sensor networks, such as data propagation and energy balance. The protocol design uses key algorithmic techniques like randomization and local optimization. Crucial performance properties of the protocols (correctness, fault-tolerance, scalability) and their trade-offs are investigated through both analytic means and large scale simulation. The experimental evaluation of algorithms for such networks is very beneficial, not only towards validating and fine-tuning algorithmic design and analysis, but also because of the ability to study the accurate impact of several important network parameters and technological details.

Keywords

Sensor Network Wireless Sensor Network Cluster Head Injection Rate Chromatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. In the Journal of Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Smart Dust Protocols for Local Detection and Propagation. Distinguished Paper. In: Proc. 2nd ACM Workshop on Principles of Mobile Computing – POMC 2002, Also, accepted in the ACM Mobile Networks (MONET) Journal, Special Issue on Algorithmic Solutions for Wireless, Mobile, Adhoc and Sensor Networks, February 2005, vol. 10(1), pp. 9–16 (2005)Google Scholar
  3. 3.
    Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A Probabilistic Algorithm for Efficient and Robust Data Propagation in Smart Dust Networks. In: Proceedings of the 5th European Wireless Conference on Mobile and Wireless Systems beyond 3G (EW 2004), Also, in the Journal of Ad-Hoc Networks (2004) (2005)Google Scholar
  4. 4.
    Chatzigiannakis, I., Dimitriou, T., Mavronicolas, M., Nikoletseas, S., Spirakis, P.: A Comparative Study of Protocols for Efficient Data Propagation in Smart Dust Networks. In: Proc. International Conference on Parallel and Distributed Computing – EUPOPAR 2003. Also in the Parallel Processing Letters (PPL) Journal (2004)Google Scholar
  5. 5.
    Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximation Layout Problems on Random Geometric Graphs. J. of Algorithms 39, 78–116 (2001)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Diaz, J., Petit, J., Serna, M.: A Random Graph Model for Optical Networks of Sensors. J. of IEEE Transactions on Mobile Computing 2(3) (2003)Google Scholar
  7. 7.
    Euthimiou, H., Nikoletseas, S., Rolim, J.: Energy Balanced Data Propagation in Wireless Sensor Networks. In: Proc. 4th International Workshop on Algorithms for Wireless, Mobile, Ad-Hoc and Sensor Networks (WMAN 2004), IPDPS 2004, Also, in the Journal of Wireless Networks (WINET) (2004) (2005)Google Scholar
  8. 8.
    Gilbert, E.N.: Random Plane Networks. J. Soc. Ind. Appl. Math 9(4), 533–543 (1961)CrossRefMATHGoogle Scholar
  9. 9.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Communication Protocol for Wireless Microsensor Networks. In: Proc. 33rd Hawaii International Conference on System Sciences – HICSS 2000 (2000)Google Scholar
  10. 10.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In: Proc. 6th ACM/IEEE International Conference on Mobile Computing – MOBICOM 2000 (2000)Google Scholar
  11. 11.
    Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On Random Intersection Graphs: The Subgraph Problem. Combinatorics, Probability and Computing journal 8, 131–159 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Leone, P., Rolim, J.: Towards a Dynamical Model for Wireless Sensor Networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Leone, P., Nikoletseas, S., Rolim, J.: An Adaptive Blind Algorithm for Energy Balanced Data Propagation. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  15. 15.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The Existence and Efficient Construction of Large Independent Sets in General Random Intersection Graphs. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Papadimitriou, C.: Algorithmic Problems in Ad Hoc Networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Sanwalani, V., Serna, M., Spirakis, P.: Chromatic Number of Random Scaled Sector Graphs. In the Theoretical Computer Science (TCS) Journal (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sotiris Nikoletseas
    • 1
  1. 1.Department of Computer Engineering and InformaticsUniversity of Patras, and CTIGreece

Personalised recommendations