Empirical Merging of Ontologies — A Proposal of Universal Uncertainty Representation Framework

  • Vít Nováček
  • Pavel Smrž
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


The significance of uncertainty representation has become obvious in the Semantic Web community recently. This paper presents our research on uncertainty handling in automatically created ontologies. A new framework for uncertain information processing is proposed. The research is related to OLE (Ontology LEarning) — a project aimed at bottom–up generation and merging of domain–specific ontologies. Formal systems that underlie the uncertainty representation are briefly introduced. We discuss the universal internal format of uncertain conceptual structures in OLE then and offer a utilisation example then. The proposed format serves as a basis for empirical improvement of initial knowledge acquisition methods as well as for general explicit inference tasks.


Query Processing Description Logic Uncertainty Representation Graph Concept Knowledge Repository 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nováček, V., Smrž, P.: Ontology acquisition for automatic building of scientific portals. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 493–500. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Nováček, V.: Ontology learning. Master’s thesis, Faculty of Informatics, Masaryk University, Czech Republic (2006) (February 2006), Available at:
  3. 3.
    NLTK: Natural Language Toolkit – Technical Reports (2005) (February 2006), Available at:
  4. 4.
    Brill, E.: A report of recent progress in transformation-based error-driven learning. In: Proc. ARPA Human Language Technology Workshop 1994, Princeton, NJ (1994)Google Scholar
  5. 5.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  6. 6.
    Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data driven ontology evaluation. In: Proceedings of LREC 2004 (2004)Google Scholar
  7. 7.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th conference on Computational linguistics, Morristown, NJ, USA, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  8. 8.
    Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll (preliminary results). In: Proceedings of WWW 2004, pp. 100–110. ACM Press, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Holi, M., Hyvönen, E.: A method for modeling uncertainty in semantic web taxonomies. In: Proceedings of WWW Alt. 2004, pp. 296–297. ACM Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Peng, Y., Ding, Z., Pan, R.: BayesOWL: A probabilistic framework for uncertainty in semantic web. In: Proceedings of Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)Google Scholar
  11. 11.
    Hofstadter, D.: Fluid Concepts & Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. Basic Books, New York (1995)Google Scholar
  12. 12.
    Cuyckens, H., Dirven, R., Taylor, J.R. (eds.): Cognitive Approaches to Lexical Semantics. Cognitive linguistics research edn., vol. 23. Mouton de Gruyter, Berlin (2003)Google Scholar
  13. 13.
    Allwood, J.: Meaning potentials and context: Some consequences for the analysis of variation and meaning. In: Cognitive Approaches to Lexical Semantics, pp. 29–66. Mouton de Gruyter, Berlin (2003)CrossRefGoogle Scholar
  14. 14.
    Ruge, G.: Combining corpus linguistics and human memory models for automatic term association. In: Strzalkowski, T. (ed.) Natural Language Information Retrieval, pp. 75–98. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  15. 15.
    Derrida, J.: A Derrida Reader: between the Blinds. Harvester Wheatsheaf, New York (1991)Google Scholar
  16. 16.
    Klir, G.J., Wierman, M.J.: Uncertainty-Based Information: Elements of Generalized Information Theory. Physica-Verlag/Springer, Heidelberg, New York (1999)MATHGoogle Scholar
  17. 17.
    Xiang, Y.: Probabilistic Reasoning in Multi-agent Systems: A Graphical Models Approach. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  18. 18.
    Kyburg, H.E., Kyburg, J., Teng, C.M.: Uncertain Inference. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}({\bf D})\): A probabilistic extension of \(\mathcal{SHOQ}({\bf D})\) for probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS, vol. 2424, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy sets. Journal of Information and Control 8, 338–353 (1965)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Garmendia, L., Salvador, A.: Computing a Transitive Opening of a Reflexive and Symmetric Fuzzy Relation. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 587–599. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004) (February 2006), Available at:
  23. 23.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Technical report, University of Manchester (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vít Nováček
    • 1
  • Pavel Smrž
    • 2
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations