Matching Hierarchical Classifications with Attributes

  • L. Serafini
  • S. Zanobini
  • S. Sceffer
  • P. Bouquet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


Hierarchical Classifications with Attributes are tree-like structures used for organizing/classifying data. Due to the exponential growth and distribution of information across the network, and to the fact that such information is usually clustered by means of this kind of structures, we assist nowadays to an increasing interest in finding techniques to define mappings among such structures. In this paper, we propose a new algorithm for discovering mappings across hierarchical classifications, which faces the matching problem as a problem of deducing relations between sets of logical terms representing the meaning of hierarchical classification nodes.


Semantic Relation Description Logic Structural Semantic Word Sense Disambiguation Reference Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected acyclic graphs and related problems. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 395–407. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 3. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Milo, T., Zohar, S.: Using schema matching to simplify heterogeneous data translation. In: Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pp. 122–133 (1998)Google Scholar
  4. 4.
    Carroll, J.: Matching RDF graphs. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 5–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Euzenat, J., Valtchev, P.: An integrativive proximity measure for ontology alignment. In: Proceedings of the workshop on Semantic Integration (2003)Google Scholar
  6. 6.
    Benerecetti, M., Bouquet, P., Zanobini, S.: Soundness of schema matching methods. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 211–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  8. 8.
    Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach and an application. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 130–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bouquet, P., Serafini, L., Zanobini, S.: Coordinating semantic peers. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 75–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)MATHGoogle Scholar
  11. 11.
    Sceffer, S., Serafini, L., Zanobini, S.: Semantic coordination of hierarchical classifications with attributes. Technical Report 706, DIT, University of Trento (2004),
  12. 12.
    Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. In: Proceedings of Vision Interface 2000, Montreal, pp. 82–88 (2000)Google Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. The VLDB Journal, 49–58 (2001)Google Scholar
  14. 14.
    Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Record 28(1), 54–59 (1999)CrossRefGoogle Scholar
  15. 15.
    Woods, W.: Conceptual indexing: A better way to organize knowledge. Technical Report TR-97-61, Sun Microsystems Laboratories (1997)Google Scholar
  16. 16.
    Kavalec, M., Svatek, V.: Information extraction and ontology learning guided by web directory. In: ECAI Workshop on NLP and ML for ontology engineering, Lyon (2002)Google Scholar
  17. 17.
    Ide, N., Veronis, J.: Introduction to the special issue on word sense disambiguation: the state of the art. Comput. Linguist. 24(1), 2–40 (1998)Google Scholar
  18. 18.
    Agirre, E., Rigau, G.: Word sense disambiguation using conceptual density. In: Proceedings of COLING 1996, Copenhagen, Denmark, pp. 16–22 (1996)Google Scholar
  19. 19.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI, pp. 448–453 (1995)Google Scholar
  20. 20.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L. Serafini
    • 2
  • S. Zanobini
    • 1
  • S. Sceffer
    • 2
  • P. Bouquet
    • 1
  1. 1.Dept. of Information and Communication TechnologyUniversity of TrentoTrentoItaly
  2. 2.ITC–IRSTTrentoItaly

Personalised recommendations