Towards Distributed Information Retrieval in the Semantic Web: Query Reformulation Using the oMAP Framework

  • Umberto Straccia
  • Raphaël Troncy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


This paper introduces a general methodology for performing distributed search in the Semantic Web. We propose to define this task as a three steps process, namely resource selection, query reformulation/ontology alignment and rank aggregation/data fusion. For the second problem, we have implemented oMAP, a formal framework for automatically aligning OWL ontologies. In oMAP, different components are combined for finding suitable mapping candidates (together with their weights), and the set of rules with maximum matching probability is selected. Among these components, traditional terminological-based classifiers, machine learning-based classifiers and a new classifier using the structure and the semantics of the OWL ontologies are proposed. oMAP has been evaluated on international test sets.


Information Resource Mapping Rule Resource Selection Ontology Language Rank Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashpole, B., Ehrig, M., Euzenat, J., Stuckenschmidt, H. (eds.): K-CAP 2005 Workshop on Integrating Ontologies (IntOnt 2005), Banff, Canada (2005)Google Scholar
  2. 2.
    Avesani, P., Giunchiglia, F., Yatskevich, M.: A Large Scale Taxonomy Mapping Evaluation. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 67–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Callan, J.: Distributed Information Retrieval. In: Croft, W.B. (ed.) Advances in Information Retrieval, pp. 127–150. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  4. 4.
    Callan, J., Connell, M.: Query-Based Sampling of Text Databases. ACM Transactions on Information Systems 19(2), 97–130 (2001)CrossRefGoogle Scholar
  5. 5.
    KW Consortium. State of the Art on Ontology Alignment. Deliverable Knowledge Web 2.2.3, FP6-507482 (2004)Google Scholar
  6. 6.
    Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to Match Ontologies on the Semantic Web. The VLDB Journal 12(4), 303–319 (2003)CrossRefGoogle Scholar
  7. 7.
    Ehrig, M., Staab, S.: QOM - quick ontology mapping. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping Ontology Alignment Methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In: 15th European Conference on Artificial Intelligence (ECAI 2004), Valence, Spain, pp. 333–337 (2004)Google Scholar
  11. 11.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Fuhr, N.: Probabilistic Datalog: Implementing Logical Information Retrieval for Advanced Applications. Journal of the American Society for Information Science 51(2), 95–110 (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: 13th International World Wide Web Conference (WWW 2004), pp. 723–731 (2004)Google Scholar
  14. 14.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals (Russian). Doklady Akademii Nauk SSSR 163(4), 845–848 (1965); English translation in Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  16. 16.
    Nottelmann, H., Straccia, U.: sPLMap: A probabilistic approach to schema matching. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 81–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Noy, N.F., Musen, M.A.: Anchor-PROMPT: Using non-local context for semantic matching. In: Workshop on Ontologies and Information Sharing at IJCAI 2001, Seattle, Washington, USA (2001)Google Scholar
  18. 18.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  19. 19.
    Renda, M.E., Straccia, U.: Web Metasearch: Rank vs. Score Based Rank Aggregation Methods. In: 18th Annual ACM Symposium on Applied Computing (SAC 2003), Melbourne, Florida, USA, pp. 841–846 (2003) Google Scholar
  20. 20.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comuting Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  21. 21.
    Shvaiko, P., Euzenat, J.: A Survey of Shema-based Matching Approaches. Journal on Data Semantics (JoDS) (2005)Google Scholar
  22. 22.
    Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Straccia, U., Troncy, R.: oMAP: Combining Classifiers for Aligning Automatically OWL Ontologies. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 133–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Straccia, U., Troncy, R.: oMAP: Results of the Ontology Alignment Contest. In: Workshop on Integrating Ontologies, Banff, Canada, pp. 92–96 (2005)Google Scholar
  25. 25.
    Sure, Y., Corcho, O., Euzenat, J., Hughes, T. (eds.): 3rd International Workshop on Evaluation of Ontology-based Tools (EON 2004), Hiroshima, Japan (2004)Google Scholar
  26. 26.
    Winkler, W.: The state record linkage and current research problems. Technical report, Statistics of Income Division. Internal Revenue Service Publication (1999)Google Scholar
  27. 27.
    Yu, C., Meng, W., King-Lup, Wu, W., Rishe, N.: Efficient and Effective Metasearch for a Large Number of Text Databases. In: 8th International Conference on Information and Knowledge Management (CIKM 1999), Kansas City, Missouri, USA, pp. 217–224 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Umberto Straccia
    • 1
  • Raphaël Troncy
    • 2
  1. 1.ISTI-CNRPisaItaly
  2. 2.CWI AmsterdamAmsterdamThe Netherlands

Personalised recommendations