RDFBroker: A Signature-Based High-Performance RDF Store

  • Michael Sintek
  • Malte Kiesel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


Many approaches for RDF stores exist, most of them using very straight-forward techniques to store triples in or mapping RDF Schema classes to database tables. In this paper we propose an RDF store that uses a natural mapping of RDF resources to database tables that does not rely on RDF Schema, but constructs a schema based on the occurring signatures, where a signature is the set of properties used on a resource. This technique can therefore be used for arbitrary RDF data, i.e., RDF Schema or any other schema/ontology language on top of RDF is not required. Our approach can be used for both in-memory and on-disk relational database-based RDF store implementations.

A first prototype has been implemented and already shows a significant performance increase compared to other freely available (in-memory) RDF stores.


Memory Consumption Load Time Deductive Database Path Expression Signature Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 34–43 (2001)Google Scholar
  2. 2.
    Hayes, P.: RDF semantics, W3C Recommendation (2004),
  3. 3.
    Lloyd, J.W.: Foundations of logic programming. Springer, New York (1984)MATHGoogle Scholar
  4. 4.
    Sintek, M., Schwarz, S., Kiesel, M.: RDF2Java (2005),
  5. 5.
    Völkel, M., Sure, Y.: RDFReactor - from ontologies to programmatic data access. In: Poster and Demo at ISWC 2005 (2005)Google Scholar
  6. 6.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and querying rdf data and schema information. In: Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W. (eds.) Spinning the Semantic Web, pp. 197–222. MIT Press, Cambridge (2003)Google Scholar
  7. 7.
    Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and retrieval in Jena2. In: Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R. (eds.) SWDB, pp. 131–150 (2003)Google Scholar
  8. 8.
    SWAD: SWAD-europe deliverable 10.1: Scalability and storage: Survey of free software / open source RDF storage systems (2002),
  9. 9.
    SWAD: SWAD-europe deliverable 10.2: Mapping semantic web data with RDBMSes (2003),
  10. 10.
    Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database representations of RDF/S stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Harth, A., Decker, S.: Optimized index structures for querying RDF from the web. In: 3rd Latin American Web Congress, Buenos Aires - Argentina, October 31-November 2 (2005)Google Scholar
  12. 12.
    Beckett, D.: The design and implementation of the redland RDF application framework. Computer Networks 39(5), 577–588 (2002)CrossRefGoogle Scholar
  13. 13.
    Janik, M., Kochut, K.J.: BRAHMS: A workBench RDF store and high performance memory system for semantic association discovery. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 431–445. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Ding, L., Wilkinson, K., Sayers, C., Kuno, H.A.: Application-specific schema design for storing large RDF datasets. In: Volz, R., Decker, S., Cruz, I.F. (eds.) PSSS. CEUR Workshop Proceedings, CEUR-WS. org., vol. 89 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Sintek
    • 1
  • Malte Kiesel
    • 1
  1. 1.DFKI GmbHKaiserslauternGermany

Personalised recommendations