Toward Multi-viewpoint Reasoning with OWL Ontologies

  • Heiner Stuckenschmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


Despite of their advertisement as task independent representations, the reuse of ontologies in different contexts is difficult. An explanation for this is that when developing an ontology, a choice is made with respect to what aspects of the world are relevant. In this paper we deal with the problem of reusing ontologies in a context where only parts of the originally encoded aspects are relevant. We propose the notion of a viewpoint on an ontology in terms of a subset of the complete representation vocabulary that is relevant in a certain context. We present an approach of implementing different viewpoints in terms of an approximate subsumption operator that only cares about a subset of the vocabulary. We discuss the formal properties of subsumption with respect to a subset of the vocabulary and show how these properties can be used to efficiently compute different viewpoints on the basis of maximal sub-vocabularies that support subsumption between concept pairs.


Description Logic Reasoning Task Concept Hierarchy Concept Pair Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arara, A., Benslimane, D.: Towards formal ontologies requirements with multiple perspectives. In: Proceedings of the 6th International Conference on Flexible Querz Answering Systems, pp. 150–160 (2004)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook - Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Beeri, C., Levy, A.Y., Rousset, M.-C.: Rewriting queries using views in description logics. In: Proceedings of the 16th Symposium on Principles of Database Systems, pp. 99–108 (1997)Google Scholar
  4. 4.
    Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer sources. Journal of Data Semantics 1, 153–184 (2003)CrossRefGoogle Scholar
  5. 5.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: Contextualizing ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cadoli, M., Schaerf, M.: Approximation in concept description languages. In: Proceedings of the International Conference on Knowledge Representation and Reasoning, pp. 330–341 (1992)Google Scholar
  8. 8.
    Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: a framework for integrating multiple perspectives in system development. International Journal of Software Engineering and Knowledge Engineering 2, 31–57 (1992)CrossRefGoogle Scholar
  9. 9.
    Giunchiglia, F., Ghidini, C.: Local models semantics, or contextual reasoning = locality + compatibility. In: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 282–289. Morgan Kaufmann, San Francisco (1998)Google Scholar
  10. 10.
    Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the semantic web through rvl lenses. Web Semantics: Science, Services and Agents on the World Wide Web 1(4), 359–375 (2004)CrossRefGoogle Scholar
  11. 11.
    Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Rifaieh, R., Arara, A., Benharkat, A.-N.: Muro: A multi-representation ontology as a foundation of enterprise information systems. In: Proceedings of the 4th International Conference on Computer and Information Technology, pp. 292–301 (2004)Google Scholar
  13. 13.
    Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74, 249–310 (1995)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using vampire to reason with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Valente, A., Russ, T., MacGregor, R., Swartout, W.: Building and (re)using an ontology of air campaign planning. IEEE Intelligent Systems 14(1), 27–36 (1999)CrossRefGoogle Scholar
  16. 16.
    R. Volz, D. Oberle, and R. Studer. Views for light-weight web ontologies. In Proceedings of the ACM Symposium on Applied Computing SAC 2003, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Heiner Stuckenschmidt
    • 1
  1. 1.Institut für Praktische InformatikUniversity of MannheimMannheimGermany

Personalised recommendations