Winnowing Ontologies Based on Application Use

  • Harith Alani
  • Stephen Harris
  • Ben O’Neil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4011)


The requirements of specific applications and services are often over estimated when ontologies are reused or built. This sometimes results in many ontologies being too large for their intended purposes. It is not uncommon that when applications and services are deployed over an ontology, only a few parts of the ontology are queried and used. Identifying which parts of an ontology are being used could be helpful to winnow the ontology, i.e., simplify or shrink the ontology to smaller, more fit for purpose size. Some approaches to handle this problem have already been suggested in the literature. However, none of that work showed how ontology-based applications can be used in the ontology-resizing process, or how they might be affected by it. This paper presents a study on the use of the AKT Reference Ontology by a number of applications and services, and investigates the possibility of relying on this usage information to winnow that ontology.


Query Result Triple Store Semantic Consistency Query Template Ontology View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alani, H., Gibbins, N., Glaser, H., Harris, S., Shadbolt, N.: Monitoring research collaborations using semantic web technologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 664–678. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alani, H., Harris, S., O’Neil, B.: Ontology winnowing: A case study on the akt reference ontology. In: Proc. Int. Conf. on Intelligent Agents, Web Technology and Internet Commerce (IAWTIC 2005), Vienna, Austria. IEEE, Los Alamitos (2005)Google Scholar
  3. 3.
    Alani, H., O’Hara, S.D.K., Shadbolt, N.: Identifying communities of practice through ontology network analysis. IEEE Intelligent Systems 18(2), 18–25 (2003)CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (May 2001)Google Scholar
  5. 5.
    Bhatt, M., Wouters, C., Flahive, A., Rahayu, W., Taniar, D.: Semantic completeness in sub-ontology extraction using distributed methods. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 508–517. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Dhar, V.: Cognitive process as a basis for intelligent retrieval systems design. Information Processing & Management 27(5), 405–432 (1991)CrossRefGoogle Scholar
  7. 7.
    Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to harvest information for the semantic web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 312–326. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gruninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies. In: Proc. Workshop on Basic Ontological Issues in Knowledge Sharing, in IJCAI 1995, Montreal, Canada (1995)Google Scholar
  9. 9.
    Haase, P., Hotho, A., Schmidt-Thieme, L., Sure, Y.: Collaborative and Usage-Driven Evolution of Personal Ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 486–499. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage. In: Proc. 1st Int. Workshop on Practical and Scalable Semantic Systems (PSSS 2003), FL, USA, pp. 1–20 (2003)Google Scholar
  12. 12.
    Klein, M., Visse, U.: Semantic web challenge 2003. IEEE Intelligent Systems 19(3), 31–33 (2004)CrossRefGoogle Scholar
  13. 13.
    Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the semantic web through RVL lenses. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 96–112. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05, Stanford Medical Informatics (March 2001)Google Scholar
  15. 15.
    Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification and Use. In: Proceedings 15th International World Wide Web Conference, Edinburgh, Scotland (2006)Google Scholar
  17. 17.
    Shadbolt, N., Schraefel, M., Gibbins, N., Harris, S.: CS Aktive Space: or how we stopped worrying and learned to love the semantic web. In: 2nd Int. Semantic Web Conf., Florida (2003)Google Scholar
  18. 18.
    Stojanovic, N., Hartmann, J., Gonzalez, J.: Ontomanager - a system for usage-based ontology management. In: Proc. FGML Workshop. SIG of Germal Information Society (2003)Google Scholar
  19. 19.
    Stojanovic, N., Stojanovic, L.: Usage-oriented evolution of ontology-based knowledge management systems. In: Int. Conf. on Ontologies, Databases and Applications of Semantics (ODBASE), Irvine, CA, pp. 230–242 (2002)Google Scholar
  20. 20.
    Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Uschold, M., Clark, P., Healy, M., Williamson, K., Woods, S.: An experiment in ontology reuse. In: Proc. Eleventh Knowledge Acquisition Workshop (KAW), Banff, Canada (1998)Google Scholar
  22. 22.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. The Knowledge Engineering Review 11(2), 93–136 (1996)CrossRefGoogle Scholar
  23. 23.
    Volz, R., Oberle, D., Studer, R.: Implementing views for light-weight web ontologies. In: Proc. IEEE Database Engineering and Application Symposium (IDEAS), Hong Kong, China (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Harith Alani
    • 1
  • Stephen Harris
    • 1
  • Ben O’Neil
    • 1
  1. 1.Advanced Knowledge Technologies (AKT), School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations