Parallel and Concurrent Security of the HB and HB +  Protocols

  • Jonathan Katz
  • Ji Sun Shin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)


Juels andWeis (building on prior work of Hopper and Blum) propose and analyze two shared-key authentication protocols - HB and HB +  - whose extremely low computational cost makes them attractive for low-cost devices such as radio-frequency identification (RFID) tags. Security of these protocols is based on the conjectured hardness of the “learning parity with noise” (LPN) problem: the HB protocol is proven secure against a passive (eavesdropping) adversary, while the HB +  protocol is proven secure against active attacks.

Juels and Weis prove security of these protocols only for the case of sequential executions, and explicitly leave open the question of whether security holds also in the case of parallel or concurrent executions. In addition to guaranteeing security against a stronger class of adversaries, a positive answer to this question would allow the HB +  protocol to be parallelized, thereby substantially reducing its round complexity.

Adapting a recent result by Regev, we answer the aforementioned question in the affirmative and prove security of the HB and HB+ protocols under parallel/concurrent executions. We also give what we believe to be substantially simpler security proofs for these protocols which are more complete in that they explicitly address the dependence of the soundness error on the number of iterations.


Active Attack Concurrent Execution Oracle Query Security Reduction Random Linear Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Associated Press. Geeks Flex Hacker Muscles at Defcon. Article appeared on, August 2 (2005)Google Scholar
  2. 2.
    Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Secure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 495–511. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Impagliazzo, R., Naor, M.: Does Parallel Repetition Lower the Error in Computationally-Sound Protocols? In: 38th IEEE Symposium on Foundations of Computer Science, pp. 374–383. IEEE, Los Alamitos (1997)Google Scholar
  4. 4.
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the Inherent Intractability of Certain Coding Problems. IEEE Trans. Info. Theory 24, 384–386 (1978)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Blum, A., Furst, M., Kearns, M., Lipton, R.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Blum, A., Kalai, A., Wasserman, H.: Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Canetti, R., Halevi, S., Steiner, M.: Hardness Amplification of Weakly Verifiable Puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-Knowledge Requires (Almost) Logarithmically Many Rounds. SIAM J. Computing 32(1), 1–47 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chabaud, F.: On the Security of Some Cryptosystems Based on Error-Correcting Codes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 131–139. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info. Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Feige, U., Shamir, A.: Witness Indistinguishability and Witness Hiding Protocols. In: 22nd ACM Symposium on Theory of Computing, pp. 416–426. ACM, New York (1990)Google Scholar
  12. 12.
    Gilbert, H., Robshaw, M., Silbert, H.: An Active Attack against HB +  — a Provably Secure Lightweight Authentication Protocol (2005), available at:
  13. 13.
    Goldreich, O.: Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge Proof Systems. SIAM J. Computing 25(1), 169–192 (1996)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma (1995), available at:
  16. 16.
    Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. J. Cryptology 7(1), 1–32 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Håstad, J.: Some Optimal Inapproximability Results. J. ACM 48(4), 798–859 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hopper, N., Blum, M.: A Secure Human-Computer Authentication Scheme. Technical Report CMU-CS-00-139, Carnegie Mellon University (2000)Google Scholar
  19. 19.
    Hopper, N., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Juels, A., Weis, S.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005), Updated version available at: CrossRefGoogle Scholar
  21. 21.
    Kearns, M.: Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM 45(6), 983–1006 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kfir, Z., Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless Smartcard Systems (2005), available at:
  23. 23.
    Kirschenbaum, I., Wool, A.: How to Build a Low-Cost, Extended-Range RFID Skimmer (2006), available at:
  24. 24.
    Raz, R.: A Parallel Repetition Theorem. SIAM J. Computing 27(3), 763–803 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: 37th ACM Symposium on Theory of Computing, pp. 84–93. ACM, New York (2005)Google Scholar
  26. 26.
    Yao, A.C.-C.: Theory and Applications of Trapdoor Functions. In: 23rd IEEE Symposium on Foundations of Computer Science, pp. 80–91. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Ji Sun Shin
    • 1
  1. 1.Dept. of Computer ScienceUniversity of MarylandUSA

Personalised recommendations