Unclonable Group Identification

  • Ivan Damgård
  • Kasper Dupont
  • Michael Østergaard Pedersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)


We introduce and motivate the concept of unclonable group identification, that provides maximal protection against sharing of identities while still protecting the anonymity of users. We prove that the notion can be realized from any one-way function and suggest a more efficient implementation based on specific assumptions.


Signature Scheme Random Oracle Random String Commitment Scheme Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative To Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Benaloh, J., de Mare, M.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 255. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Brands, S.: Untraceable Off-line Cash in Wallets with Observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I.: Fast and Secure Immunization Against Adaptive Man-in-the-Middle Impersonation. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 75–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Damgård, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Public Key Cryptography 2002, pp. 125–140 (2002)Google Scholar
  10. 10.
    Damgård, Dupont, Pedersen.: Unclonable Group Identification the Eprint archive, http://www.iacr.org
  11. 11.
    Fischlin, M.: Communication-Efficient Non-Interactive Proofs of Knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. In: FOCS 1984, pp. 464–479 (1984)Google Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC 2000, pp. 235–244 (2000)Google Scholar
  16. 16.
    Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 169. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Chaum, D., Fiat, A., Naor, M.: Untraceable Electronic Cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  18. 18.
    Naor, M.: Bit Commitment Using Pseudorandomness. J. Cryptology 4(2), 151–158 (1991)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Perron: Bemerkungen über die Verteilung der quadratischen Reste. Math.Z. 56, 122–130 (1952)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures. In: STOC 1990, pp. 387–394 (1990)Google Scholar
  22. 22.
    Kiayias, A., Yung, M.: Group Signatures with Efficient Concurrent Join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Kasper Dupont
    • 1
  • Michael Østergaard Pedersen
    • 1
  1. 1.Aarhus University, BRICSDenmark

Personalised recommendations