Abstract
We present the first aggregate signature, the first multisignature, and the first verifiably encrypted signature provably secure without random oracles. Our constructions derive from a novel application of a recent signature scheme due to Waters. Signatures in our aggregate signature scheme are sequentially constructed, but knowledge of the order in which messages were signed is not necessary for verification. The aggregate signatures obtained are shorter than Lysyanskaya et al. sequential aggregates and can be verified more efficiently than Boneh et al. aggregates. We also consider applications to secure routing and proxy signatures.
Keywords
- Signature Scheme
- Random Oracle
- Proxy Signature
- Aggregate Signature
- Signing Query
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-34547-3_36
Chapter PDF
References
Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE J. Selected Areas in Comm. 18(4), 593–610 (2000)
Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with offline TTP. In: Karger, P., Gong, L. (eds.) Proceedings of IEEE Security & Privacy, pp. 77–85 (May 1998)
Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)
Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)
Boldyreva, A.: Threshold signature, multisignature and blind signature schemes based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)
Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. Cryptology ePrint Archive, Report 2003/096 (2003), http://eprint.iacr.org/
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004) (extended abstract in Proceedings of Asiacrypt 2001)
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)
Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient IBE scheme with short(er) public parameters in the standard model. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)
Coron, J.-S., Naccache, D.: Boneh et al.’s k-element aggregate extraction assumption is equivalent to the Diffie-Hellman assumption. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)
Galbraith, S.: Pairings. In: Blake, I.F., Seroussi, G., Smart, N. (eds.) Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Notes, vol. ch. IX, vol. 317, pp. 183–213. Cambridge University Press, Cambridge (2005)
Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Hayashi, R., Okamoto, T., Tanaka, K.: An RSA family of trap-door permutations with a common domain and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 291–304. Springer, Heidelberg (2004)
Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC J. Res. & Dev. 71, 1–8 (1983)
Kent, S., Lynn, C., Seo, K.: Secure border gateway protocol (Secure-BGP). IEEE J. Selected Areas in Comm. 18(4), 582–592 (2000)
Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)
Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Gong, L., Stearn, J. (eds.) Proceedings of CCS 1996, pp. 48–57. ACM Press, New York (1996)
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures (extended abstract). In: Samarati, P. (ed.) Proceedings of CCS 2001, pp. 245–254. ACM Press, New York (2001)
Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint Archive, Report 2005/369 (2005), http://eprint.iacr.org/
Nicol, D., Smith, S., Zhao, M.: Evaluation of efficient security for BGP route announcements using parallel simulation. Simulation Modelling Practice and Theory 12, 187–216 (2004)
Ohta, K., Okamoto, T.: Multisignature schemes secure against active insider attacks. IEICE Trans. Fundamentals E82-A(1), 21–31 (1999)
Okamoto, T.: A digital multisignature scheme using bijective public-key cryptosystems. ACM Trans. Computer Systems 6(4), 432–441 (1988)
Paterson, K.: Cryptography from pairings. In: Blake, I.F., Seroussi, G., Smart, N. (eds.) Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Notes, ch. X, vol. 317, pp. 215–251. Cambridge University Press, Cambridge (2005)
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B. (2006). Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (eds) Advances in Cryptology - EUROCRYPT 2006. EUROCRYPT 2006. Lecture Notes in Computer Science, vol 4004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11761679_28
Download citation
DOI: https://doi.org/10.1007/11761679_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34546-6
Online ISBN: 978-3-540-34547-3
eBook Packages: Computer ScienceComputer Science (R0)