Private Circuits II: Keeping Secrets in Tamperable Circuits

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)


Motivated by the problem of protecting cryptographic hardware, we continue the investigation of private circuits initiated in [16]. In this work, our aim is to construct circuits that should protect the secrecy of their internal state against an adversary who may modify the values of an unbounded number of wires, anywhere in the circuit. In contrast, all previous works on protecting cryptographic hardware relied on an assumption that some portion of the circuit must remain completely free from tampering.

We obtain the first feasibility results for such private circuits. Our main result is an efficient transformation of a circuit C, realizing an arbitrary (reactive) functionality, into a private circuit C′ realizing the same functionality. The transformed circuit can successfully detect any serious tampering and erase all data in the memory. In terms of the information available to the adversary, even in the presence of an unbounded number of adaptive wire faults, the circuit C′ emulates a black-box access to C.


Clock Cycle Security Parameter Unbounded Number Cascade Stage Output Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, R., Kuhn, M.: Tamper Resistance—A Cautionary Note. In: USENIX E-Commerce Workshop, pp. 1–11. USENIX Press (1996)Google Scholar
  2. 2.
    Anderson, R., Kuhn, M.: Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations. In: Proc. 2nd Workshop on Information Hiding. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of 20th STOC (1988)Google Scholar
  5. 5.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Boneh, D., Demillo, R.A., Lipton, R.J.: On the Importance of Checking Cryptographic Protocols for Faults. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp. 37–51. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Chaum, D., Crepeau, C., Damgård, I.: Multiparty unconditional secure protocols. In: Proc. of 20th STOC (1988)Google Scholar
  9. 9.
    Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differential Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Daemen, J., Rijmen, V.: Resistance Against Implementation Attacks: A Comparative Study of the AES Proposals. In: AES 1999 (March 1999)Google Scholar
  11. 11.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering. In: Proceedings of Theory of Cryptography Conference (2004)Google Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game (extended abstract). In: Proc. of 19th STOC (1987)Google Scholar
  15. 15.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis—The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Protecting Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kahn, D.: The Codebreakers. The MacMillan Company, Basingstoke (1967)Google Scholar
  18. 18.
    Kelsey, J., Schneier, B., Wagner, D.: Side Channel Cryptanalysis of Product Ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, p. 150. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks (Extended Abstract). In: Proc. of PODC 1991, pp. 51–59 (1991)Google Scholar
  24. 24.
    Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Tech. report CSTR-02-003, Computer Science Dept., Univ. of Bristol (June 2002)Google Scholar
  25. 25.
    Pfitzmann, B., Schunter, M., Waidner, M.: Secure Reactive Systems. IBM Technical report RZ 3206 (93252) (May 2000)Google Scholar
  26. 26.
    Pippenger, N.: On Networks of Noisy Gates. In: Proc. of FOCS 1985, pp. 30–38 (1985)Google Scholar
  27. 27.
    Quisquater, J.-J., Samyde, D.: Eddy current for Magnetic Analysis with Active Sensor. In: Esmart 2002 (September 2002)Google Scholar
  28. 28.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Rao, J.R., Rohatgi, P.: EMpowering Side-Channel Attacks. IACR ePrint (2001/037) (2001)Google Scholar
  30. 30.
    US Air Force, Air Force Systems Security Memorandum 7011—Emission Security Countermeasures Review (May 1,1998) Google Scholar
  31. 31.
    van Eck, W.: Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk. Computers & Security 4, 269–286 (1985)CrossRefGoogle Scholar
  32. 32.
    Wright, D.: Spycatcher. Viking Penguin Inc. (1987)Google Scholar
  33. 33.
    Younis, S.G., Knight Jr., T.F.: Asymptotically Zero Energy Split-Level Charge Recovery Logic. In: Proceedings of 1994 International Workshop on Low Power Design, Napa, CA (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

There are no affiliations available

Personalised recommendations