The Function Field Sieve in the Medium Prime Case

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)


In this paper, we study the application of the function field sieve algorithm for computing discrete logarithms over finite fields of the form \({\mathbb {F}}_{q^n}\) when q is a medium-sized prime power. This approach is an alternative to a recent paper of Granger and Vercauteren for computing discrete logarithms in tori, using efficient torus representations. We show that when q is not too large, a very efficient L(1/3) variation of the function field sieve can be used. Surprisingly, using this algorithm, discrete logarithms computations over some of these fields are even easier than computations in the prime field and characteristic two field cases. We also show that this new algorithm has security implications on some existing cryptosystems, such as torus based cryptography in T 30, short signature schemes in characteristic 3 and cryptosystems based on supersingular abelian varieties. On the other hand, cryptosystems involving larger basefields and smaller extension degrees, typically of degree at most 6, such as LUC, XTR or T 6 torus cryptography, are not affected.


Discrete Logarithm Discrete Logarithm Problem Multiplicative Identity Asymptotic Complexity Extension Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adleman, L., DeMarrais, J.: A subexponential algorithm for discrete logarithms over all finite fields. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 147–158. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Adleman, L., DeMarrais, J.: A subexponential algorithm for discrete logarithms over all finite fields. Math. Comp. 61(203), 1–15 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Adleman, L.M., Huang, M.A.: Function field sieve method for discrete logarithms over finite fields. In: Information and Computation, vol. 151, pp. 5–16. Academic Press, London (1999)Google Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. of Cryptology 17(4), 297–319 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brouwer, A.E., Pellikaan, R., Verheul, E.R.: Doing More with Fewer Bits. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 321–332. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE transactions on information theory IT-30(4), 587–594 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gordon, D.: Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math. 6, 124–138 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Granger, R., Holt, A., Page, D., Smart, N., Vercauteren, F.: Function field sieve in characteristic three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 223–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Granger, R., Vercauteren, F.: On the discrete logarithm problem on algebraic tori. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 66–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Joux, A.: A one round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method. Math. Comp. 72, 953–967 (2003)zbMATHGoogle Scholar
  16. 16.
    Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the medium prime case (preprint)Google Scholar
  17. 17.
    LaMacchia, B.A., Odlyzko, A.M.: Solving Large Sparse Linear Systems Over Finite Fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 109–133. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Lanczos, C.: Solutions of systems of linear equations by minimized iterations (Bureau of Standards). J. Res. Nat. 49, 33–53 (1952)MathSciNetGoogle Scholar
  19. 19.
    Lennon, M.J.J., Smith, P.J.: LUC: A New Public Key System. In: IFIP TC11 Ninth International Conference on Information Security IFIP/Sec., pp. 103–117 (1993)Google Scholar
  20. 20.
    Lenstra, A.K., Lenstra Jr., H.W. (eds.): The development of the number field sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  21. 21.
    Lenstra, A.K., Verheul, E.R.: The XTR Public Key System. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Lercier, R., Vercauteren, F.: Discrete logarithms in \(\mathbb{F}p^{18}\) - 101 digits. NMBRTHRY mailing list (June 2005)Google Scholar
  23. 23.
    Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  24. 24.
    Panario, D., Gourdon, X., Flajolet, P.: An analytic approach to smooth polynomials over finite fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 226–236. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comp. 32, 918–924 (1978)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rubin, K., Silverberg, A.: Supersingular abelian varieties in cryptology. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 336–353. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Rubin, K., Silverberg, A.: Torus-Based Cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Schirokauer, O.: Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A 345, 409–423 (1993)Google Scholar
  29. 29.
    van Dijk, M., Granger, R., Page, D., Rubin, K., Silverberg, A., Stam, M., Woodruff, D.: Practical cryptography in high dimensional tori. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 234–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Wiedemann, D.H.: Solving Sparse Linear Equations Over Finite Fields. IEEE Trans. Information Theory 32, 54–62 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.DGAUSA
  2. 2.CELARBruzFrance
  3. 3.Université de Versailles St-Quentin-en-Yvelines, PRISMVersaillesFrance

Personalised recommendations