Oblivious Transfer Is Symmetric

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)


We show that oblivious transfer of bits from A to B can be obtained from a single instance of the same primitive from B to A. Our reduction is perfect and shows that oblivious transfer is in fact a symmetric functionality. This solves an open problem posed by Crépeau and Sántha in 1991.


Failure Probability Admissible Pair Oblivious Transfer Auxiliary Input Bell System Technical Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  2. 2.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification. Journal of Cryptology 16(4), 219–237 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Crépeau, C.: Correct and private reductions among oblivious transfers, Ph. D. Thesis, Massachusetts Institute of Technology (1990)Google Scholar
  6. 6.
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions. In: Proceedings of the 28th Symposium on Foundations of Computer Science (FOCS 1988), pp. 42–52. IEEE, Los Alamitos (1988)CrossRefGoogle Scholar
  8. 8.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Crépeau, C., Sántha, M.: On the reversibility of oblivious transfer. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldreich, O.: Foundations of Cryptography, Volume II: Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Imai, H., Müller-Quade, J., Nascimento, A., Winter, A.: Rates for bit commitment and coin tossing from noisy correlation. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT) 2004. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Imai, H., Nascimento, A., Winter, A.: Oblivious transfer from any genuine noise (unpublished manuscript, 2004)Google Scholar
  14. 14.
    Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 20–31 (1988)Google Scholar
  15. 15.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRefGoogle Scholar
  16. 16.
    Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 245–354 (1999)Google Scholar
  18. 18.
    Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful adversary. AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 155–169 (1990)Google Scholar
  19. 19.
    Rabin, M.: How to exchange secrets by oblivious transfer, Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  20. 20.
    Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer (unpublished manuscript, 1999)Google Scholar
  21. 21.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Winter, A., Nascimento, A., Imai, H.: Commitment capacity of discrete memoryless channels. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 35–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Wolf, S., Wullschleger, J.: Zero-error information and applications in cryptography. In: Information Theory Workshop (ITW) 2004. IEEE, Los Alamitos (2004)Google Scholar
  24. 24.
    Wolf, S., Wullschleger, J.: New monotones and lower bounds in unconditional two-party computation. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 467–477. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54(8), 1355–1387 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yeung, R.W.: A new outlook on Shannon’s information measures. IEEE Transactions on Information Theory 37(3), 466–474 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Computer Science DepartmentETH ZürichSwitzerland

Personalised recommendations