Advertisement

VSH, an Efficient and Provable Collision-Resistant Hash Function

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4004)

Abstract

We introduce VSH, very smooth hash, a new S-bit hash function that is provably collision-resistant assuming the hardness of finding nontrivial modular square roots of very smooth numbers modulo an S-bit composite. By very smooth, we mean that the smoothness bound is some fixed polynomial function of S. We argue that finding collisions for VSH has the same asymptotic complexity as factoring using the Number Field Sieve factoring algorithm, i.e., subexponential in S.

VSH is theoretically pleasing because it requires just a single multiplication modulo the S-bit composite per Ω(S) message-bits (as opposed to O(logS) message-bits for previous provably secure hashes). It is relatively practical. A preliminary implementation on a 1GHz Pentium III processor that achieves collision resistance at least equivalent to the difficulty of factoring a 1024-bit RSA modulus, runs at 1.1 MegaByte per second, with a moderate slowdown to 0.7MB/s for 2048-bit RSA security.

VSH can be used to build a fast, provably secure randomised trapdoor hash function, which can be applied to speed up provably secure signature schemes (such as Cramer-Shoup) and designated-verifier signatures.

Keywords

hashing provable reducibility integer factoring 

References

  1. 1.
    Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision resistant hash function. Report, 2005/193, Cryptology ePrint Archive (2005), http://eprint.iacr.org/2005/193/
  5. 5.
    Crandall, R., Pomerance, C.: Prime Numbers: a Computational Perspective. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM Transactions on Information and System Security (ACM TISSEC), vol. 3, pp. 161–185 (2000)Google Scholar
  7. 7.
    Damgård, I.: Collision-free hash functions and public key signature schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptively chosen message attacks. SIAM J. on Comp. 17(2), 281–308 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hankerson, S., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)zbMATHGoogle Scholar
  11. 11.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Lenstra, A.K., Verheul, E.R.: The XTR public key system. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lenstra, A.K., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J., Leyland, P.: Factoring estimates for a 1024-bit RSA modulus. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 55–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Pointcheval, D.: The composite discrete logarithm and secure authentication. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 113–128. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Rivest, R.L., Silverman, R.D.: Are ‘strong’ primes needed for RSA. Report, 2001/007, Cryptology ePrint Archive (2001), http://eprint.iacr.org/2001/007/
  19. 19.
    Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard Schnorr/RSA signatures into universal designated-verifier signatures. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Rubin, K., Silverberg, A.: Torus-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Dai, W.: Crypto++ 5.2.1 Benchmarks, http://www.eskimo.com/weidai/benchmarks.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of ComputingMacquarie UniversityAustralia
  2. 2.EPFL IC LACAL, INJ 330LausanneSwitzerland

Personalised recommendations