Advertisement

Networking Property During Epileptic Seizure with Multi-channel EEG Recordings

  • Huihua Wu
  • Xiaoli Li
  • Xinping Guan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)

Abstract

EEG recordings are widely used in epilepsy research. We intend to address a question whether small world network property exists in neural networks when epileptic seizures occur. In this paper, we introduce a bispectrum analysis to calculate the interaction between two EEG recordings; then, a suitable threshold is chosen to convert the interaction of the six channels at five frequency bands to a sparse graph (node: n=30, edge: k=4-7). Through analyzing a real EEG recording, it is found the clustering coefficient is similar to that of regular graph; however the path length is less than that of regular graph. Thus a primary suggestion can be made that neural networks possess small world network characteristic. During epileptic seizures, the small world property of neural network is more significant.

Keywords

Random Graph Epileptic Seizure Cluster Coefficient Regular Graph Small World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iasemidis, L.D., Pardalos, P.M., Principe, J.C.: Adaptive Epileptic Seizure Prediction System. IEEE Transactions on Biomedical Engineering 50, 616–627 (2003)CrossRefGoogle Scholar
  2. 2.
    Hoeve, M.J., Jones, R.D., Carroll, G.J., Goelz, H.: Automated Detection of Epileptic Seizures in the EEG. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, vol. 3, pp. 943–946 (2001)Google Scholar
  3. 3.
    Albert, R., Barabasi, A.L.: Statistical Mechanics of Complex Networks. Review of Modern Physics 74, 47–97 (2002)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Albert, R., Barabasi, A.L.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Pikovsky, A.S., Rosenblum, M., Kurths, J.: Synchronization, a Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Pikovsky, A.S., Rosenblum, M.G., Osipov, G.V., Kurths, J.: Phase Synchronization of Chaotic Oscillators by External Driving. Physica D 104, 219–238 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Helme, B.I., Nikias, C.L.: Improved Spectrum Performance via a Data Adaptive Weighted Burg Technique. IEEE Transactions on Signal Processing 33, 903–910 (1985)CrossRefGoogle Scholar
  8. 8.
    Nikias, C.L., Raghuveer, M.R.: Multidimensional Parametric Spectral Estimation. Signal Processing 9, 280–290 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Shen, C., Lemmin, U.: Ultasonic Intensity Power Spectrum Estimation by Using the Bispectral Reconstrucion Technique. Signal Processing 61, 39–44 (1997)MATHCrossRefGoogle Scholar
  10. 10.
    Sigl, J.C., Chamoun, N.G.: An Introduction of Bispectral Analysis for the Electroencephalogram. Journal of Clinical Monitoring 10, 392–404 (1994)CrossRefGoogle Scholar
  11. 11.
    Hinich, M.J., Clay, C.S.: The Application of the Discrete Fourier Transform in the Estimation of Power Spectra, Coherence and Bispectra of Geophysical Data. Review of Geophysics 6, 347–363 (1968)CrossRefGoogle Scholar
  12. 12.
    Swami, A., Mendel, J.M., Nikias, C.L. (Max): Higher-Order Spectral Analysis Toolbox. The MathWorks, Inc. (1998)Google Scholar
  13. 13.
    Kochen, M. (ed.): The Small World., Ablex, Norwood, New Jersey (1989)Google Scholar
  14. 14.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ‘Small-World’ Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  15. 15.
    Olaf, S., Jonathan, D.Z.: The Small World of the Cerebral Cortex. Neuroinformatics 2, 145–162 (2004)CrossRefGoogle Scholar
  16. 16.
    Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H.U., Schulze-Bonhage, A., Timmera, J.: Comparison of Three Nonlinear Seizure Prediction Methods by Means of the Seizure Prediction Characteristic. Physica D 194, 357–368 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Aschenbrenner-Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H.U., Timmer, J., Schulze-Bonhage, A.: How Well Can Epileptic Seizures Be Predicted? An Evaluation of a Nonlinear Method. Brain 126, 2616–2626 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Huihua Wu
    • 1
  • Xiaoli Li
    • 1
  • Xinping Guan
    • 1
  1. 1.Institute of Electrical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations