Comparison of Forecasting Performance of AR, STAR and ANN Models on the Chinese Stock Market Index

  • Qi-an Chen
  • Chuan-Dong Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)


This paper investigates whether it is possible to exploit the nonlinear behavior of daily returns to improve forecasting on Chinese Shanghai stock market index over short and long horizons. We compare out-of-sample forecasts of daily returns for the Chinese Shanghai Stock Market Index, generated by five competing models, namely a linear AR model, the LSTAR and ESTAR smooth transition autoregressive models and two ANN models: MLP and JCN. The research results show that the nonlinear ANN models may be an appropriate way to improve forecasts. The return on the Chinese Shanghai Stock Market Index could be predicted more accurately by using ANN models, and the neural network technique could be said to represent a slight improvement in prediction of the stock index with respect to AR model and STAR models.


Stock Return Forecast Performance Stock Index Forecast Horizon Daily Return 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elton, E.J., Gruber, M.J.: Modern Portfolio Theory and Investment Analysis, 4th edn. John Wiley &Sons, New York (1991)Google Scholar
  2. 2.
    Poddig, T., Rehkugler, H.: A World of Integrated Financial Markets Using Artificial Neu-ral Networks. Neurocomputing 10, 251–273 (1996)MATHCrossRefGoogle Scholar
  3. 3.
    Fama, E.F.: Efficient Capital Markets:II. Journal of Finance 46, 1575–1617 (1991)CrossRefGoogle Scholar
  4. 4.
    Keim, D., Stambaugh, R.: Predicting Returns in the Stock and Bond Markets. Journal of Financial Economics 17, 357–390 (1986)CrossRefGoogle Scholar
  5. 5.
    Pérez-Rodríguez, J.V., Torra, S., Andrada-Félix, J.: STAR and ANN Models: Forecasting Performance on the Spanish “Ibex-35” Stock Index. Journal of Empirical Finance 12, 490–509 (2005)CrossRefGoogle Scholar
  6. 6.
    Pesaran, M.H., Timmermann, P.: A Simple Nonparametric Test of Predictive Perform-ance. Journal of Business and Economic Statistics 10, 461–465 (1992)CrossRefGoogle Scholar
  7. 7.
    Diebold, F., Mariano, R.: Comparing Predictive Accuracy. Journal of Business and Economic Statistics 13, 253–263 (1995)CrossRefGoogle Scholar
  8. 8.
    Mills, T.C.: The Econometric Modeling of Financial Time Series, 2nd edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  9. 9.
    Teräsvirta, T.: Specification, Estimation and Evaluation of Smooth Transition Autoregres-sive Models. Journal of the American Statistical Association 89, 208–218 (1994)CrossRefGoogle Scholar
  10. 10.
    Cybenko, G.: Approximation by Superpositions of A Sigmoidal Function. Math. Control Signals Systems 2, 303–314 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kuan, C., White, H.: Artificial Neural Networks: An Econometric Perspective. Econometric Reviews 13, 1–91 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Granger, C.W.J., Teräsvirta, T.: Modeling Nonlinear Economic Relationships. Oxford University Press, Oxford (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qi-an Chen
    • 1
  • Chuan-Dong Li
    • 2
  1. 1.College of Economics and Business AdministrationChongqing UniversityChina
  2. 2.College of Computer ScienceChongqing UniversityChongqingChina

Personalised recommendations