The Minimum Detectable Capacity of Digital Image Information Hiding

  • Fan Zhang
  • Ruixin Liu
  • Xinhong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)


Information hiding capacity of digital image is the maximum information that can be hidden in an image. But the lower limit of information hiding, the minimum detectable information capacity is also an interesting problem. This paper proposes a method to analyze the minimum detectable capacity of information hiding in digital images based on the theories of attractors and attraction basin of neural network. The results of research show that the attractors of neural network decide the lower limit of information hiding.


Neural Network Image Watermark Information Hiding Stego Image Perceptual Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, I., Milller, M., McKellips, A.: Watermarking as Communications with Side Information. Proceedings of the IEEE, Special Issue on Identification and Protection of Multimedia Information 87, 1127–1141 (1999)Google Scholar
  2. 2.
    Cox, I., Kilian, J., Leighton, F.: Secure Spread Spectrum Watermarking for Multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  3. 3.
    Servetto, S., Podilchuk, C., Ramchandran, K.: Capacity Issues in Digital Image Watermarking. In: IEEE International Conference on Image Processing, Chicago, Illinois, USA, pp. 445–449 (1998)Google Scholar
  4. 4.
    Barni, M., Bartolini, F., Rosa, D.: Capacity of Full Frame DCT Image Watermarks. IEEE Transactions on Image Processing 9(8), 1450–1455 (2000)CrossRefGoogle Scholar
  5. 5.
    Moulin, P., Mihcak, M.: A Framework for Evaluating the Data-Hiding Capacity of Image Sources. IEEE Transactions on Image Processing 11(6), 1029–1042 (2002)CrossRefGoogle Scholar
  6. 6.
    Moulin, P.: The Role of Information Theory in Watermarking and Its Application to Image Watermarking. Signal Processing 81(6), 1121–1139 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Lin, C., Chang, S.: Zero-error Information Hiding Capacity of Digital Images. In: IEEE International Conference on Image Processing, Thessaloniki, Greece, pp. 1007–1010 (2001)Google Scholar
  8. 8.
    Zhang, F., Zhang, H.: Digital Watermarking Capacity and Reliability. In: Proceedings of e-Commerce Technology, San Diego, California, USA, pp. 295–298 (2004)Google Scholar
  9. 9.
    Zhang, F., Zhang, H.: Image Watermarking Capacity and Reliability Analysis in Wavelet Domain. Journal of Imaging Science and Technology 49(5), 481–485 (2005)Google Scholar
  10. 10.
    McEliece, R., Posner, C., Rodemich, R., Santosh, R.: The Capacity of the Hopfield Associative Memory. IEEE Transactions on Information Theory 33(4), 461–482 (1987)MATHCrossRefGoogle Scholar
  11. 11.
    Davey, N., Hunt, S.: The Capacity and Attractor Basins of Associative Memory Models. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1606, pp. 330–339. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 79(4), 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)Google Scholar
  14. 14.
    Amit, D., Gutfreund, G., Sompolinsky, H.: Statistical Mechanics of Neural Networks Near Saturation. Annals of Physics 173(1), 30–67 (1987)CrossRefGoogle Scholar
  15. 15.
    Newman, C.: Memory Capacity in Neural Network Models: Rigorous Lower Bounds. Neural Networks 3(2), 223–239 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fan Zhang
    • 1
  • Ruixin Liu
    • 2
  • Xinhong Zhang
    • 3
  1. 1.College of Computer & Information EngineeringHenan UniversityKaifengP.R. China
  2. 2.Yellow River Conservancy Technical InstituteKaifengP.R. China
  3. 3.Department of Computer CenterHenan UniversityKaifengP.R. China

Personalised recommendations