Channel Equalization Using Complex Extreme Learning Machine with RBF Kernels

  • Ming-Bin Li
  • Guang-Bin Huang
  • Paramasivan Saratchandran
  • Narasimhan Sundararajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)


This paper studies the performance of extreme learning machine with complex-valued radial basis function (ELM-CRBF) in the channel equalization applications. Comparing with complex minimal resource allocation network (CMRAN), complex radial basis function (CRBF) network and Bayesian equalizers, the simulation results show that ELM-CRBF equalizer is superior in terms of symbol error rate (SER) and learning speed.


Radial Basis Function Extreme Learning Machine Hide Neuron Radial Basis Function Neural Network Radial Basis Function Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, G.B., Chen, Y.Q., Babri, H.A.: Classification Ability of Single Hidden Layer Feedforward Neural Networks. IEEE Transactions on Neural Networks 11, 799–801 (2000)CrossRefGoogle Scholar
  2. 2.
    Cha, I., Kassam, S.A.: Channel Equalization Using Adaptive Complex Radial Basis Function Networks. IEEE Journal Selected Areas in Communications 13, 122–131 (1995)CrossRefGoogle Scholar
  3. 3.
    Jianping, D., Sundararajan, N., Saratchandran, P.: Communication Channel Equalization Using Complex-Valued Minimal Radial Basis Function Neural Networks. IEEE Transactions on Neural Networks 13, 687–696 (2002)CrossRefGoogle Scholar
  4. 4.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2004), Budapest, Hungary, July 25-29 (2004)Google Scholar
  5. 5.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: Thoery and Applications. Neurocomputing (2006) (in press)Google Scholar
  6. 6.
    Huang, G.B., Siew, C.K.: Extreme Learning Machine: RBF Network Case. In: Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV 2004), Kunming, China, December 6-9 (2004)Google Scholar
  7. 7.
    Huang, G.B., Siew, C.K.: Extreme Learning Machine with Randomly Assigned RBF Kernels. International Journal of Information Technology 11 (2005)Google Scholar
  8. 8.
    Huang, G.B., Zhu, Q.Y., Mao, K.Z., Siew, C.K., Saratchandran, P., Sundararajan, N.: Can Threshold Networks Be Trained Directly? IEEE Transactions on Circuits and Systems II 53 (2006)Google Scholar
  9. 9.
    Li, M.B., Huang, G.B., Saratchandran, P., Sundararajan, N.: Fully Complex Extreme Learning Machine. Neurocomputing 68, 306–314 (2005)CrossRefGoogle Scholar
  10. 10.
    Huang, G.B., Chen, L., Siew, C.K.: Universal Approximation Using Incremental Constructive Feedforword Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks (2006) (to appear)Google Scholar
  11. 11.
    Chen, S., Mclaughlin, S., Mulgrew, B.: Complex-Valued Radial Basis Function Networks, Part II: Application to Digital Communications Channel Equalization. Signal Processing 36, 165–188 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ming-Bin Li
    • 1
  • Guang-Bin Huang
    • 1
  • Paramasivan Saratchandran
    • 1
  • Narasimhan Sundararajan
    • 1
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations