Design of a High Precision Temperature Measurement System

  • Kenan Danisman
  • Ilker Dalkiran
  • Fatih V. Celebi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3973)


An experimental method is designed and proposed in order to estimate the non-linearity, test and the calibration of a thermocouple using artificial neural network (ANN) based algorithms integrated in a virtual instrument (VI). An ANN and a data acquisition board with signal conditioning unit designed are used for data optimization and to collect experimental data respectively. In both training and testing phases of the ANN, Wavetek 9100 calibration unit is used to obtain the experimental data. After the successful training completion of the ANN, it is used as a neural linearizer to calculate the temperature from the thermocouple’s output voltage.


Artificial Neural Network Hide Layer Mean Square Error Artificial Neural Network Model Virtual Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areny, R.P., Webster, J.G.: Sensors and Signal Conditioning, 2nd edn. Wiley, New York (2001)Google Scholar
  2. 2.
    Michalski, L., Eckersdorf, K., Kucharski, J., Mcghee, J.: Temperature Measurement, 2nd edn. Wiley Interscience, Hoboken (2001)CrossRefGoogle Scholar
  3. 3.
    Klopfenstein, L.R.: Software Linearization Techniques for Thermocouples, Thermistors, and Rtds. Isa Transactions 33, 293–305 (1994)CrossRefGoogle Scholar
  4. 4.
    Patranabis, D., Ghosh, S., Bakshi, C.: Linearizing Transducer Characteristics. IEEE Trans. Inst. Meas. 37, 66–69 (1988)CrossRefGoogle Scholar
  5. 5.
    Mahana, P.N., Trofimenkoff, F.N.: Transducer Output Signal Processing Using an Eight-Bit Microcomputer. IEEE Trans. Instrum. Meas. 35, 182–186 (1986)Google Scholar
  6. 6.
    Anvekar, D.K., Sonde, B.S.: Transducer Output Signal Processing Using Dual and Triple Microprocessor Systems. IEEE Trans. Instrum. Meas. 38, 834–836 (1989)Google Scholar
  7. 7.
    Flammini, A., Marioli, D., Taroni, A.: Transducer Output Signal Processing Using an Optimal Look-Up Table in Microcontroller-Based Systems. Electron. Lett. 33, 1197–1198 (1997)CrossRefGoogle Scholar
  8. 8.
    Meireles, M.R.G., Almedia, P.E.M., Simoes, M.G.: A Comprehensive Review for Industrial Applicability of Artificial Neural Networks. IEEE Trans. Ind. Electron. 50, 585–601 (2003)CrossRefGoogle Scholar
  9. 9.
    Daponte, P., Grimaldi, D.: Artificial Neural Networks in Measurements. Measurement 23, 93–115 (1998)CrossRefGoogle Scholar
  10. 10.
    Attari, M., Boudjema, F., Heniche, M.: An Artificial Neural Network to Linearize a G (Tungsten Vs. Tungsten 26% Rhenium) Thermocouple Characteristic in the Range of Zero to 2000oC. In: Proc. of the IEEE Int. Symp. on Industrial Electronics Isie 1995, vol. 1, pp. 176–180 (1995)Google Scholar
  11. 11.
    Marques, N.J.M., Martin-del-Brio, B.: Sensor Linearization with Neural Networks. IEEE Trans. Ind. Electron. 48, 1288–1290 (2001)CrossRefGoogle Scholar
  12. 12.
    Pereira, J.M.D., Postolache, O., Girao, P.M.B.S., Cretu, M.: Minimizing Temperature Drift Errors Conditioning Circuits Using Artificial Neural Networks. IEEE Trans. Instrum. Meas. 49, 1122–1127 (2000)CrossRefGoogle Scholar
  13. 13.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, New Jersey (1999)MATHGoogle Scholar
  14. 14.
    Rojas, R.: Neural Networks, A Systematic Introduction. Springer, New York (1996)MATHGoogle Scholar
  15. 15.
    Ham, F.M., Kostanic, I.: Principles of Neurocomputing for Science and Engineering. Mc-Graw Hill, New York (2001)Google Scholar
  16. 16.
    Hagan, M.T., Menhaj, M.: Training Feedforward Networks with the Marquardt Algorithm. IEEE Neural Networks 5(6), 989–993 (1994)CrossRefGoogle Scholar
  17. 17.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, New Jersey (1983)MATHGoogle Scholar
  18. 18.
    Foresee, F.D., Hagan, M.T.: Gauss-Newton Approximation to Bayesian Regularization. In: Proc. of Int. Conference on Neural Networks ICNN 1997, pp. 1930–1935 (1997)Google Scholar
  19. 19.
    MacKay, D.J.C.: Bayesian Interpolation. Neural Computation 4, 415–447 (1992)CrossRefGoogle Scholar
  20. 20.
    Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)Google Scholar
  21. 21.
    Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learning: the RPROP Algorithm. In: Proc. of the IEEE Int. Con. on Neural Networks, vol. 1, pp. 586–591 (1993)Google Scholar
  22. 22.
    NIST ITS-90 Thermocouple Database,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kenan Danisman
    • 1
  • Ilker Dalkiran
    • 1
  • Fatih V. Celebi
    • 2
  1. 1.Department of Electrical and Electronics EngineeringErciyes UniversityKayseriTurkey
  2. 2.Faculty of EngineeringBaskent UniversityAnkaraTurkey

Personalised recommendations