Semantic Analytics Visualization

  • Leonidas Deligiannidis
  • Amit P. Sheth
  • Boanerges Aleman-Meza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3975)


In this paper we present a new tool for semantic analytics through 3D visualization called “Semantic Analytics Visualization” (SAV). It has the capability for visualizing ontologies and meta-data including annotated web-documents, images, and digital media such as audio and video clips in a synthetic three-dimensional semi-immersive environment. More importantly, SAV supports visual semantic analytics, whereby an analyst can interactively investigate complex relationships between heterogeneous information. The tool is built using Virtual Reality technology which makes SAV a highly interactive system. The backend of SAV consists of a Semantic Analytics system that supports query processing and semantic association discovery. Using a virtual laser pointer, the user can select nodes in the scene and either play digital media, display images, or load annotated web documents. SAV can also display the ranking of web documents as well as the ranking of paths (sequences of links). SAV supports dynamic specification of sub-queries of a given graph and displays the results based on ranking information, which enables the users to find, analyze and comprehend the information presented quickly and accurately.


Virtual Environment Digital Medium Semantic Association Virtual Reality Technology Aviation Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aduna Cluster Map Library version 2005.1 (Integration Guide) (2005)Google Scholar
  2. 2.
    Alani, H.: TGVizTab: An Ontology Visualization Extension for Protégé. In: Knowledge Capture, Workshop on Visualization Information in Knowledge Engineering (2003)Google Scholar
  3. 3.
    Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D., Sheth, A.P.: An Ontological Approach to the Document Access Problem of Insider Threat. In: IEEE International Conference on Intelligence and Security Informatics (ISI 2005), Atlanta, Georgia, USA, pp. 486–491. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.: Context-Aware Semantic Association Ranking. In: First International Workshop on Semantic Web and Databases, Berlin, Germany, pp. 33–50 (2003)Google Scholar
  5. 5.
    Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth, A.P., Arpinar, I.B., Joshi, A., Finin, T.: Semantic Analytics on Social Networks: Experiences in Addressing the Problem of Conflict of Interest Detection. In: 15th International World Wide Web Conference, Edinburgh, Scotland (2006)Google Scholar
  6. 6.
    Anselm, S.: InfoCrystal: A Visual Tool for Information Retrieval. In: IEEE Visualization Conference, San Jose, California, USA, pp. 150–157 (1993)Google Scholar
  7. 7.
    Anyanwu, K., Sheth, A.P.: r-Queries: Enabling Querying for Semantic Associations on the Semantic Web. In: Twelfth International World Wide Web Conference, Budapest, Hungary, pp. 690–699 (2003)Google Scholar
  8. 8.
    Anyanwu, K., Sheth, A.P., Maduko, A.: SemRank: Ranking Complex Relationship Search Results on the Semantic Web. In: 14th International World Wide Web Conference, Chiba Japan, pp. 117–127 (2005)Google Scholar
  9. 9.
    Bowman, D., Hodges, L.: An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In: 1997 Symposium on Interactive 3D Graphics, pp. 35–38 (1997)Google Scholar
  10. 10.
    Chen, H., Schuffels, C., Orwig, R.: Internet Categorization and Search: A Self-Orginizing Approach. Journal of Visual Communication and Image Representation 7(1), 88–102Google Scholar
  11. 11.
    Chuah, M.C., Roth, S.F., Mattis, J., Kolojejchick, J.: SDM: Selective Dynamic Manipulation of Visualizations. In: ACM Symposium on User Interface Software and Technology, pp. 61–70 (1995)Google Scholar
  12. 12.
    DeFanti, T.A., Brown, M.D., McCormick, B.H.: Expanding Scientific and Engineering Research Opportunities. IEEE Computer 22(8), 12–25Google Scholar
  13. 13.
    Deligiannidis, L., Jacob, R.J.K.: The London Walkthrough in an Immersive Digital Library Environment. In: 2005 International Conference on Modeling, Simulation and Visualization Methods, pp. 179–185 (2005)Google Scholar
  14. 14.
    Deligiannidis, L., Weheba, G., Krishnan, K., Jorgensen, M.: JWSU: A Java3D Framework for Virtual Reality. In: International Conference on Imaging Science, Systems, and Technology (2003)Google Scholar
  15. 15.
    Ding, L., Kolari, P., Finin, T., Joshi, A., Peng, Y., Yesha, Y.: On Homeland Security and the Semantic Web: A Provenance and Trust Aware Inference Framework. In: AAAI Spring Symposium on AI Technologies for Homeland Security. Stanford University, California (2005)Google Scholar
  16. 16.
    Eick, S.G., Wills, G.J.: Navigating Large Networks with Hierarchies. In: IEEE Visualization Conference, San Jose, California, USA, pp. 204–210 (1993)Google Scholar
  17. 17.
    Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz - Open Source Graph Drawing Tools. In Graph Drawing. In: 9th International Symposium, Vienna, Austria, pp. 483–484 (2001)Google Scholar
  18. 18.
    Fairchild, K.M., Poltrock, S.E., Furnas, G.W.: SemNet: Three-dimensional graphic representation of large knowledge bases. In: Cognitive Science and its Application for Human-Computer Interface, Erlbaum, Hillsdale, NJ, USA, pp. 201–233 (1988)Google Scholar
  19. 19.
    Gansner, E.R., North, S.C.: An Open Graph Visualization System and Its Applications to Software Engineering. Software - Practice and Experience 30(11), 1203–1233Google Scholar
  20. 20.
  21. 21.
  22. 22.
    Guha, R.V., McCool, R.: TAP: A Semantic Web Test-bed. Journal of Web Semantics 1(1), 81–87Google Scholar
  23. 23.
    Hammond, B., Sheth, A., Kochut, K.: Semantic Enhancement Engine: A Modular Document Enhancement Platform for Semantic Applications over Heterogeneous Content. In: Kashyap, V., Shklar, L. (eds.) Real World Semantic Web Applications, pp. 29–49. Ios Press Inc., Amsterdam (2002)Google Scholar
  24. 24.
    Janik, M., Kochut, K.: BRAHMS: A WorkBench RDF Store and High Performance Memory System for Semantic Association Discovery. In: Fourth International Semantic Web Conference, Galway, Ireland (2005)Google Scholar
  25. 25.
    Kantor, P.B., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C (eds.): Intelligence and Security Informatics. In: IEEE International Conference on Intelligence and Security Informatics (ISI 2005). Springer, Atlanta (2005)Google Scholar
  26. 26.
    Kohonen, T.: Self-organization of very large document collections: State of the art. In: 8th International Conference on Artificial Neural Networks, pp. 65–74 (1998)Google Scholar
  27. 27.
    Kohonen, T.: Self Organizing Maps. Springer, Espoo (1994)MATHGoogle Scholar
  28. 28.
    Maedche, A., Staab, S.: The Text-To-Onto Ontology Learning Environment (Software Demonstration at ICCS 2000). In: Eight International Conference on Conceptual Structures, Darmstadt, Germany (2000)Google Scholar
  29. 29.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41Google Scholar
  30. 30.
    Polikoff, I., Allemang, D.: Semantic Technology - TopQuadrant Technology Briefing v1.1 (2003)Google Scholar
  31. 31.
  32. 32.
    Sheth, A.P.: Semantic Meta Data for Enterprise Information Integration, DM Review (2003)Google Scholar
  33. 33.
    Sheth, A.P., Aleman-Meza, B., Arpinar, I.B., Halaschek, C., Ramakrishnan, C., Bertram, C., Warke, Y., Avant, D., Arpinar, F.S., Anyanwu, K., Kochut, K.: Semantic Association Identification and Knowledge Discovery for National Security Applications. Journal of Database Management 16(1), 33–53Google Scholar
  34. 34.
    Sheth, A.P., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing Semantic Content for the Web. IEEE Internet Computing 6(4), 80–87Google Scholar
  35. 35.
    Sheth, A.P., Ramakrishnan, C.: Semantic (Web) Technology in Action: Ontology Driven Information Systems for Search, Integration and Analysis. IEEE Data Engineering Bulletin 26(4), 40–47Google Scholar
  36. 36.
    Storey, M.A.D., Noy, N.F., Musen, M.A., Best, C., Fergerson, R.W., Ernst, N.: Jambalaya: An Interactive Environment for Exploring Ontologies. In: International Conference on Intelligent User Interfaces (2002)Google Scholar
  37. 37.
    Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., Yu, Y.: Towards Imaging Large-Scale Ontologies for Quick Understanding and Analysis. In: Fourth International Semantic Web Conference, Galway, Ireland, pp. 702–715 (2005)Google Scholar
  38. 38.
    van Harmelen, F., Broekstra, J., Fluit, C., ter Horst, H., Kampman, A., van der Meer, J., Sabou, M.: Ontology-based Information Visualization. In: International Conference on Information Visualisation, London, England, UK, pp. 546–554 (2001)Google Scholar
  39. 39.
    Volz, R., Oberle, D., Staab, S., Studer, R.: OntoLiFT Prototype - WonderWeb: Ontology Infrastructure for the Semantic Web, WonderWeb DeliverableGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leonidas Deligiannidis
    • 1
    • 2
  • Amit P. Sheth
    • 2
  • Boanerges Aleman-Meza
    • 2
  1. 1.Virtual Reality Lab and LSDIS Lab, Computer ScienceThe University of GeorgiaAthensUSA
  2. 2.LSDIS Lab, Computer ScienceThe University of GeorgiaAthensUSA

Personalised recommendations