Computational Modeling and Experimental Validation of Aviation Security Procedures

  • Uwe Glässer
  • Sarah Rastkar
  • Mona Vajihollahi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3975)


Security of civil aviation has become a major concern in recent years, leading to a variety of protective measures related to airport and aircraft security to be established by regional, national and international authorities. We propose a novel computational approach to checking consistency, coherence and completeness of procedural security requirements defined by aviation security guidelines. To deal with uncertainty, we use probabilistic modeling techniques, combining abstract state machine modeling with symbolic model checking.


Model Check Security Measure Civil Aviation Security Control Symbolic Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Civil Aviation Organization: Annex 17 to the Convention on International Civil Aviation: Standards and Recommended Practices - Security (2002)Google Scholar
  2. 2.
    The European Parliament and the Council of the European Union: Regulation (EC) No 2320/2002 of the European Parliament and of the Council - Establishing Common Rules in the Field of Civil Aviation Security (2002)Google Scholar
  3. 3.
    Börger, E., Stärk, R.: Abstract State Machines: a Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)MATHGoogle Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. In: Panangaden, P., van Breugel, F. (eds.). CRM Monograph Series, vol. 23, American Mathematical Society, Providence (2004)Google Scholar
  6. 6.
    Laleau, R., Vignes, S., Ledru, Y., Lemoine, M., Bert, D., Donzeau-Gouge, V., Dubois, C., Peureux, F.: Application of Requirements Analysis Techniques to the Analysis of Civil Aviation Security Standards. In: Proc. of the First Intl. Workshop on Situational Requirements Engineering Processes (SREP 2005), France (2005)Google Scholar
  7. 7.
    Farahbod, R., Glässer, U.: Semantic Blueprints of Discrete Dynamic Systems: Challenges and Needs in Computational Modeling of Complex Behavior. In: Proc. 6th International Heinz Nixdorf Symposium, Heinz Nixdorf Institute (2006)Google Scholar
  8. 8.
    Glässer, U., Gurevich, Y., Veanes, M.: Abstract Communication Model for Distributed Systems. IEEE Trans. on Soft. Eng. 30(7), 458–472 (2004)CrossRefGoogle Scholar
  9. 9.
    Glässer, U., Gotzhein, R., Prinz, A.: The Formal Semantics of SDL-2000: Status and Perspectives. Comput. Networks 42(3), 343–358 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Brantingham, P.L., Kinney, B., Glässer, U., Singh, K., Vajihollahi, M.: A Computational Model for Simulating Spatial Aspects of Crime in Urban Environments. In: Jamshidi, M. (ed.) Proceedings of 2005 IEEE International Conference on Systems, Man and Cybernetics, pp. 3667–3674. IEEE, Los Alamitos (2005)Google Scholar
  11. 11.
    Börger, E.: The ASM Ground Model Method as a Foundation for Requirements Engineering. In: Verification: Theory and Practice, pp. 145–160 (2003)Google Scholar
  12. 12.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (2006)Google Scholar
  13. 13.
    PRISM: (PRISM Web Site),
  14. 14.
    Del Castillo, G., Winter, K.: Model checking support for the ASM high-level language. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 331–346. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Glässer, U., Rastkar, S., Vajihollahi, M.: Computational Modeling and Experimental Validation of Aviation Security Procedures. Technical Report SFU-CMPT-TR-2006-02, Simon Fraser University (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uwe Glässer
    • 1
  • Sarah Rastkar
    • 1
  • Mona Vajihollahi
    • 1
  1. 1.Software Technology Lab School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations