Advertisement

A Review of Public Health Syndromic Surveillance Systems

  • Ping Yan
  • Daniel Zeng
  • Hsinchun Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3975)

Abstract

In response to the critical need of early detection of potential infectious disease outbreaks or bioterrorism events, public health syndromic surveillance systems have been rapidly developed and deployed in recent years. This paper surveys major research and system development issues related to syndromic surveillance systems and discusses recent advances in this important area of security informatics study.

Keywords

Syndromic Surveillance Public Health Surveillance Outbreak Detection Mortality Weekly Report Syndromic Surveillance System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrew, W., Moore, G.C.: Rich Tsui, Mike Wagner: Summary of Biosurveillance-relevant Statistical and Data Mining Techniques. RODS Laboratory Technical Report (2002)Google Scholar
  2. 2.
    Burkom, H.S.: Biosurveillance Applying Scan Statistics with Multiple Disparate Data Sources. Journal Urban Health 2003 80(2), 57–65 (2003)Google Scholar
  3. 3.
    CDC: National Electronic Disease Surveillance System: the surveillance and monitoring component of the Public Health Information Network. Atlanta, GA: US Department of Health and Human Services (2004)Google Scholar
  4. 4.
    Christensen, L., Fiszman, H.P.: MPLUS: a Probabilistic Medical Language Understanding System. In: Workshop on Natural Language Processing in the Biomedical Domain (2002)Google Scholar
  5. 5.
    Christina, A., Mikosz, J.S., Black, S., Gibbs, G., Cardenas, I.: Comparison of Two Major Emergency Department-Based Free-Text Chief-Complaint Coding Systems. Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC). 53(Suppl.) (2004)Google Scholar
  6. 6.
    Colin, R., Goodall, A.L., Halasz, S., Koski, E., Agarwal, D., Tse, S., Jacobson, G.: Performance-Critical Anomaly Detection — United States, December 2002-March 2004. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC). vol. 54(Suppl.), pp. 188 (2005)Google Scholar
  7. 7.
    Colleen, A., Bradley, H.R., Walker, D., Loonsk, J.: BioSense: Implementation of a National Early Event Detection and Situational Awareness System. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 11–20 (2005)Google Scholar
  8. 8.
    Cooper, G.F., Dash, D.H., Levander, J.D., Wong, W.-K., Hogan, W.R., Wagner, M.M.: Bayesian Biosurveillance of Disease Outbreaks. In: The Twentieth Conference on Uncertainty in Artificial Intelligence, Banff, Alberta, Canada (2004)Google Scholar
  9. 9.
    Buckeridge, D.L., Graham, J., O’Connor, M.J., Choy, M.K., Tu, S.W., Musen, M.A.: Knowledge-Based Bioterrorism Surveillance. In: American Medical Informatics Association Symposium, San Antonio, TX (2002)Google Scholar
  10. 10.
    Das, D., Weiss, D., Mostashari, F., Treadwell, T., McQuiston, J., Hutwagner, L., Karpati, A., Bornschlegel, K., Seeman, M., Turcios, R., Terebuh, P., Curtis, R., Heffernan, R., Balter, S.: Enhanced Drop-in Syndromic Surveillance in New York City. J. Urban Health 80(1), 176–188 (2003)Google Scholar
  11. 11.
    Buckeridge, D.L., Burkam, H., Campbell, M., Hogan, W.R., Moore, A.W.: Algorithms for Rapid Outbreak Detection: a Research Synthesis. Journal of Biomedical Informatics 38, 99–113 (2005)CrossRefGoogle Scholar
  12. 12.
    Buckeridge, D.L., Switzer, P., Owens, D., Siegrist, D., Pavlin, J., Musen, M.: an Evaluation Model for Syndromic Surveillance: Assessing the Performance of a Temporal Algorithm. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl,), pp. 109–115 (2005)Google Scholar
  13. 13.
    Dena, M., Bravata, K.M.M., Smith, W.M., Rydzak, C., Szeto, H., Buckeridge, D.L., Haberland, C., Owens, D.K.: Systematic Review: Surveillance Systems for Early Detection of Bioterrorism-Related Diseases. Ann. Intern. Med. 140, 910–922 (2004)Google Scholar
  14. 14.
    Gesteland, P.H., Wagner, M.M., Chapman, W.W., Espino, J.U., Tsui, F.-C., Gardner, R.M., Rolfs, R.T., Dato, V., James, B.C., Haug, P.J.: Rapid Deployment of an Electronic Disease Surveillance System in the State of Utah for the 2002 Olympic Winter games. In: Proc. AMIA Symp 2002 (2002)Google Scholar
  15. 15.
    Grigoryan, V.V., Wagner, M.M., Waller, K., Wallstrom, G.L., Hogan, W.R.: The Effect of Spatial Granularity of Data on Reference Dates for Influenza Outbreaks. RODS Laboratory Technical Report (2005)Google Scholar
  16. 16.
    Ma, H., Rolka, H., Mandl, K., Buckeridge, D., Fleischauer, A., Pavlin, J.: Implementation of Laboratory Order Data in BioSense Early Event Detection and Situation Awareness System. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 27–30 (2005)Google Scholar
  17. 17.
    Hutwagner, L., Thompson, W., Seeman, G.M., Treadwell, T.: The Bioterrorism Preparedness and Response Early Aberration Reporting System (EARS). J. Urban Health 80(2), 89–96 (2003)Google Scholar
  18. 18.
    Ivanov, O., Wagner, M.M., Chapman, W.W., Olszewski, R.T.: Accuracy of Three Classifiers of Acute Gastrointestinal Syndrome for Syndromic Surveillance. In: AMIA Symp. 2002 (2002)Google Scholar
  19. 19.
    Daniel, J.B., Heisey-Grove, D., Gadam, P., Yih, W., Mandl, K., De Maria Jr., A., Platt, R.: Connecting Health Departments and Providers: Syndromic Surveillance’s Last Mile. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 147–51 (2005)Google Scholar
  20. 20.
    Espino, J.U., Wagner, M., Szczepaniak, C., Tsui, F.C., Su, H., Olszewski, R., Liu, Z., Chapman, W., Zeng, X., Ma, L., Lu, Z., Dara, J.: Removing a Barrier to Computer-Based Outbreak and Disease Surveillance — The RODS Open Source Project. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 53(Suppl.), pp. 34–41 (2004)Google Scholar
  21. 21.
    Lombardo, J., Burkom, H., Elbert, E., Magruder, S., Lewis, S.H., Loschen, W., Sari, J., Sniegoski, C., Wojcik, R., Pavlin, J.: A systems overview of the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE II). Journal of Urban Health: Bulletin of the New York Academy of Medicine 80(2), 32–42 (2003)Google Scholar
  22. 22.
    Hurt-Mullen, K.J., Coberly, J.: Syndromic Surveillance on the Epidemiologist’s Desktop: Making Sense of Much Data. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 141–147 (2005)Google Scholar
  23. 23.
    Kleinman, K.P., Abrams, A., Mandl, K., Platt, R.: Simulation for Assessing Statistical Methods of Biologic Terrorism Surveillance. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 103–110 (2005)Google Scholar
  24. 24.
    Kleinman, K.P., Abrams, A.M., Kulldorff, M., Platt, R.: A Model-adjusted Spacetime Scan Statistic with an Application to Syndromic Surveillance. Epidemiol Infect 2005, (119), 409–19 (2005)Google Scholar
  25. 25.
    Kleinman, K., Lazarus, R., Platt, R.: A Generalized Linear Mixed Models Approach for Detecting Incident Cluster/signals of Disease in Small Areas, with an Application to Biological Terrorism (with Invited Commentary). Am. J. Epidemiol. 2004 159, 217–24 (2004)Google Scholar
  26. 26.
    Kulldorff, M.: Prospective Time Periodic Geographical Disease Surveillance Using a Scan Statistic. Journal of the Royal Statistical Society, Series A (164), 61–72 (2001)Google Scholar
  27. 27.
    Lazarus, R., Kleinman, K.P., Dashevsky, I., DeMaria, A., Platt, R.: Using Automated Medical Records for Rapid Identification of Illness Syndromes (Syndromic Surveillance): the Example of Lower Respiratory Infection. BMC Public Health 1(9) (2001)Google Scholar
  28. 28.
    Sokolow, L.Z., Grady, N., Rolka, H., Walker, D., McMurray, P., English-Bullard, R., Loonsk, J.: Deciphering Data Anomalies in BioSense. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 133–140 (2005)Google Scholar
  29. 29.
    Lober, W.B., Karras, B.T., Wagner, M.M., Overhage, J.M., Davidson, A.J., Fraser, H., Trigg, L.J., Mandl, K.D., Espino, J.U., Tsui, F.C.: Roundtable on Bioterrorism Detection: Information System-based Surveillance. J. Am. Med. Inform. Assoc. 2003 9, 105–15 (2002)Google Scholar
  30. 30.
    Lombardo, J.S., Burkom, H., Pavlin, J.: Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II), Framework for Evaluating Syndromic Surveillance Systems. In: Syndromic surveillance: report from a national conference, 2003. MMWR 2004, vol. 53(Suppl.), pp. 159–65 (2004)Google Scholar
  31. 31.
    Luiz Duczmal, D.B.: Using Modified Spatial Scan Statistic to Improve Detection of Disease Outbreak When Exposure Occurs in Workplace — Virginia, 2004. In: Morbidity and Mortality Weekly Report, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), p. 187 (2005)Google Scholar
  32. 32.
    Mandl, K.D., Overhage, J.M., Wagner, M.M., Lober, W.B., Sebastiani, P., Mostashari, F., Pavlin, J.A., Gesteland, P.H., Treadwell, T., Koski, E., Hutwagner, L., Buckeridge, D.L., Aller, R.D., Grannis, S.: Implementing Syndromic Surveillance: a Practical Guide Informed by the Early Experience. J. Am. Med. Inform. Assoc. 11(2), 141–50 (2004)Google Scholar
  33. 33.
    Wagner, M.M., Espino, J., Tsui, F.-C., Gesteland, P., Chapman, W., Ivanov, O., Moore, A., Wong, W., Dowling, J., Hutman, J.: Syndrome and Outbreak Detection Using Chief-Complaint Data — Experience of the Real-Time Outbreak and Disease Surveillance Project. In: MMWR, Centers for Disease Control and Prevention (CDC), vol. 53(Suppl.), pp. 28–32 (2004)Google Scholar
  34. 34.
    Crubézy, M., O’Connor, M., Buckeridge, D.L., Pincus, Z., Musen, M.A.: Ontology-Centered Syndromic Surveillance for Bioterrorism. IEEE Intelligent Systems 20(5), 26–35 (2005)CrossRefGoogle Scholar
  35. 35.
    CDC.: Syndromic Surveillance for Bioterrorism Following the Attacks on the World Trade Center–New York City, 2001. MMWR 51, 13-5 (2002)Google Scholar
  36. 36.
    Reis, B.Y., Mandl, K.D.: Time Series Modeling for Syndromic Surveillance. BMC Medical Informatics and Decision Making (2003)Google Scholar
  37. 37.
    Ritter, T.: LEADERS: Lightweight Epidemiology Advanced Detection and Emergency Response System. In: SPIE (2002)Google Scholar
  38. 38.
    Shahar, Y., Musen, M.S.: Knowledge-based Temporal Abstraction in Clinical Domains. Artificial Intelligence in Medicine 8, 267–98 (1996)Google Scholar
  39. 39.
    Tsui, F.-C., Espino, J.U., Dato, V.M., Gesteland, P.H., Hutman, J., Wagner, M.M.: Technical Description of RODS: a Real-time Public Health Surveillance System. J. Am. Med. Inform. Assoc. 10, 399–408 (2003)CrossRefGoogle Scholar
  40. 40.
    Tsui, F.C.R., Wagner, M., Dato, V., Chang, H.C.: Value of ICD-9–Coded Chief Complaints for Detection of Epidemics. Symposium of Journal of American Medical Informatics Association (2001)Google Scholar
  41. 41.
    Buetow, T., Chaboya, L., O’Toole, C., Cushna, T., Daspit, D., Petersen, T., Atabakhsh, H., Chen, H.: A Spatio Temporal Visualizer for Law Enforcement. In: ISI (2003)Google Scholar
  42. 42.
    Chapman, W.W., Christensen, L.M., Wagner, M.M., Haug, P.J., Ivanov, O., Dowling, J.N., Olszewski, R.T.: Classifying Free-text Triage Chief Complaints into Syndromic Categories with Natural Language Processing. Artificial Intelligence in Medicine 33(1), 31–40 (2005)CrossRefGoogle Scholar
  43. 43.
    Katherine Yih, W., Abrams, A., Danila, R., Green, K., Kleinman, K., Kulldorff, M., Miller, B., Nordin, J., Platt, R.: Ambulatory-Care Diagnoses as Potential Indicators of Outbreaks of Gastrointestinal Illness — Minnesota. In: MMWR, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 157–162 (2005)Google Scholar
  44. 44.
    Wong, W.-K., Cooper, G., Dash, D., Levander, J., Dowling, J., Hogan, W., Wagner, M.: Use of Multiple Data Streams to Conduct Bayesian Biologic Surveillance. In: MMWR, the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), vol. 54(Suppl.), pp. 63–70 (2005)Google Scholar
  45. 45.
    Wong, W.-K., Moore, A., Cooper, G., Wagner, M.: Rule-based Anomaly Pattern Detection for Detecting Disease Outbreaks. In: AAAI 2002, Edmonton, Alberta (2002)Google Scholar
  46. 46.
    Wong, W.-K., Moore, A., Cooper, G., Wagner, M.: WSARE: What’s Strange about Recent Events? Journal of Urban Health 80(2), 66–75 (2003)Google Scholar
  47. 47.
    Yih, W.K.C.B., Harmon, R.: The National Bioterrorism Syndromic Surveillance Demonstration Program. In: MMWR 2004, vol. 53(Suppl.), pp. 43–6 (2004)Google Scholar
  48. 48.
    Kaufman, Z., Peled-Leviatan, E.C.T., Lavi, C., Aharonowitz, G., Dichtiar, R., Bromberg, M., Havkin, O., Shalev, R.M.Y., Shalev, V., Shemer, J., Green, M.: Using Data on an Influenza B Outbreak To Evaluate a Syndromic Surveillance System — Israel. In: MMWR, Centers for Disease Control and Prevention (CDC), June 2004, vol. 54(Suppl.), p. 191 (2005)Google Scholar
  49. 49.
    Zelicoff, A., Brillman, J., Forslund, D.W., George, J.E., Zink, S., Koenig, S., Staab, T., Simpson, G., Umland, E., Bersell, K.: The rapid syndrome validation project (RSVP). In: AMIA Symp. 2001 (2001)Google Scholar
  50. 50.
    Zeng, D., Chang, W., Chen, H.: Clustering-based Spatio-Temporal Hotspot Analysis Techniques in Security Informatics. In: IEEE Transactions on Intelligent Transportation Systems (2004)Google Scholar
  51. 51.
    Hadler, J.L., Siniscalchi, A., Dembek, Z.F.: Hospital Admissions Syndromic Surveillance — Connecticut, September 2001-November 2003. In: MMWR, Centers for Disease Control and Prevention (CDC), vol. 53(Suppl.), pp. 50–52 (2004)Google Scholar
  52. 52.
    Dembek, Z.F., Carley, K., Hadler, J.: Guidelines for Constructing a Statewide Hospital Syndromic Surveillance Network. MMWR, Centers for Disease Control and Prevention (CDC) 54(Suppl.), 21–26 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ping Yan
    • 1
  • Daniel Zeng
    • 1
  • Hsinchun Chen
    • 1
  1. 1.Department of Management Information SystemsUniversity of ArizonaTucson

Personalised recommendations