Motion-Alert: Automatic Anomaly Detection in Massive Moving Objects

  • Xiaolei Li
  • Jiawei Han
  • Sangkyum Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3975)


With recent advances in sensory and mobile computing technology, enormous amounts of data about moving objects are being collected. With such data, it becomes possible to automatically identify suspicious behavior in object movements. Anomaly detection in massive sets of moving objects has many important applications, especially in surveillance, law enforcement, and homeland security.

Due to the sheer volume of spatiotemporal and non-spatial data (such as weather and object type) associated with moving objects, it is challenging to develop a method that can efficiently and effectively detect anomalies in complex scenarios. The problem is further complicated by the fact that anomalies may occur at various levels of abstraction and be associated with different time and location granularities. In this paper, we analyze the problem of anomaly detection in moving objects and propose an efficient and scalable classification method, Motion-Alert, which proceeds with the following three steps.
  1. 1

    Object movement features, called motifs, are extracted from the object paths. Each path consists of a sequence of motif expressions, associated with the values related to time and location.

  2. 2

    To discover anomalies in object movements, motif-based generalization is performed that clusters similar object movement fragments and generalizes the movements based on the associated motifs.

  3. 3

    With motif-based generalization, objects are put into a multi-level feature space and are classified by a classifier that can handle high-dimensional feature spaces.

We implemented the above method as one of the core components in our moving-object anomaly detection system, motion-alert. Our experiments show that the system is more accurate than traditional classification techniques.


Feature Space Anomaly Detection Object Movement Movement Path Movement Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB 2004 (2004)Google Scholar
  2. 2.
    Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M.: Querying shapes of histories. In: VLDB 1995 (1995)Google Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules in large databases. In: Research Report RJ 9839, IBM Almaden Research Center (1994)Google Scholar
  4. 4.
    Bagnall, A.J., Janacek, G.J.: Clustering time series from arma models with clipped data. In: KDD 2004 (2004)Google Scholar
  5. 5.
    Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest neighbor and reverse nearest neighbor queries for moving objects. In: Proc. IDEAS (2002)Google Scholar
  6. 6.
    Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House (1999)Google Scholar
  7. 7.
    Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81, 166–210 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at,
  9. 9.
    Chon, H.D., Agrawal, D., Abbadi, A.E.: Range and knn query processing for moving objects in grid model. ACM/Kluwer MONET (2003)Google Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge Univ. Press, Cambridge (2000)Google Scholar
  11. 11.
    Forsyth, D.A., Ponce, J.: Computer Vision - A Modern Approach. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  12. 12.
    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD 1999 (1999)Google Scholar
  14. 14.
    Güting, G.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)Google Scholar
  15. 15.
    Güting, R.H., et al.: A foundation for representing and querying moving objects. In: ACM Trans. Database Systems, TODS (March 2000)Google Scholar
  16. 16.
    Iwerks, G.S., Samet, H., Smith, K.: Continuous k-nearest neighbor queries for continuously moving points with updates. In: VLDB 2003 (2003)Google Scholar
  17. 17.
    Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient b+-tree based indexing of moving objects. In: VLDB 2004 (2004)Google Scholar
  18. 18.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD 2004 (2004)Google Scholar
  21. 21.
    Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted trajectories. In: SIGMOD 2004 (2004)Google Scholar
  22. 22.
    Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the positions of continuously moving objects. In: SIGMOD 2000 (2000)Google Scholar
  23. 23.
    Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A road network embedding technique for k-nearest neighbor search in moving object databases. In: GeoInformatica (2003)Google Scholar
  24. 24.
    Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 236. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB 2002 (2002)Google Scholar
  27. 27.
    Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: VLDB 2003 (2003)Google Scholar
  28. 28.
    Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 425. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE 2005 (2005)Google Scholar
  30. 30.
    Yoo, J.S., Shekhar, S.: A partial join approach to mining co-location patterns. In: GIS 2004 (2004)Google Scholar
  31. 31.
    Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE 2005 (2005)Google Scholar
  32. 32.
    Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.: Location-based spatial queries. In: SIGMOD 2003 (2003)Google Scholar
  33. 33.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996 (1996)Google Scholar
  34. 34.
    Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial collocations. In: KDD 2004 (2004)Google Scholar
  35. 35.
    Zu, Y., Wang, C., Gao, L., Wang, X.S.: Supporting movement pattern queries in user-specified scales. IEEE Trans. Knowledge and Data Engineering (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaolei Li
    • 1
  • Jiawei Han
    • 1
  • Sangkyum Kim
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-Champaign 

Personalised recommendations