A Neural Network Approach to m-Daily-Ahead Electricity Price Prediction

  • Hsiao-Tien Pao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3972)


This paper proposes an artificial neural network (ANN) model to predict m-daily-ahead electricity price using direct forecasting approach on European Energy Exchange (EEX) market. The most important characteristic of this model is the single output node for m-period-ahead forecasts. The potentials of ANNs are investigated by employing cross-validation schemes. Out-of-sample performance evaluated with three criteria across five forecasting horizons shows that the proposed ANNs are more robust multi-step-ahead forecasting method than autoregressive error models (AUTOREG). Moreover, ANN predictions are quite accurate even when the length of forecast horizon is relatively short or long.


Artificial Neural Network Model Electricity Price Input Node ARIMA Model Neural Network Approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conejo, A.J., Prieto, F.J.: Mathematical Programming and Electricity Markets 9, 1–54 (2001)Google Scholar
  2. 2.
    Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA Models to Predict Next-Day Electricity Prices. IEEE Trans. Power Syst. 18, 1014–1020 (2003)CrossRefGoogle Scholar
  3. 3.
    Fosso, O.B., Gjelsvik, A., Haugstad, A., Birger, M., Wangensteen, I.: Generation Scheduling in a Deregulated System. IEEE Trans. Power Syst. 14, 75–81 (1999)CrossRefGoogle Scholar
  4. 4.
    Nogales, F.J., Contreras, J., Conejo, A.J., Espinola, R.: Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Trans. Power Syst. 17, 342–348 (2002)CrossRefGoogle Scholar
  5. 5.
    Obradovic, Z., Tomsovic, K.: Time Series Methods for Forecasting Electricity Market Pricing. Proc. IEEE Power Eng. Soc. Summer Meeting 2, 1264–1265 (1999)Google Scholar
  6. 6.
    Crespo, J., Hlouskova, J., Kossmeier, S., Obersteiner, M.: Forecasting Electricity Spot Prices Using Linear Univariate Time Series Models. App. Energy 77, 87–106 (2002)CrossRefGoogle Scholar
  7. 7.
    Szkuta, B.R., Sanabria, L.A., Dillon, T.S.: Electricity Price Short-Term Forecastin Using Artificial Neural Networks. IEEE Trans. Power Syst. 14, 851–857 (1999)CrossRefGoogle Scholar
  8. 8.
    Ramsay, B., Wang, A.J.: A Neural Network Based Estimator for Electricity Spot-Pricing with Particular Reference to Weekend and Public Holidays. Neurocompute 23, 47–57 (1998)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Luh, P.B., Kasiviswanathan, K.: Energy Clearing Price Prediction and Confidence Interval Estimation with Cascaded Neural Networks. IEEE Trans. Power Syst. 18, 99–105 (2003)CrossRefGoogle Scholar
  10. 10.
    Rodriguez, C.P., Anders, G.J.: Energy Price Forecasting in the Ontario Competitive Power System Market. IEEE Trans. Power Syst. 19, 366–374 (2004)CrossRefGoogle Scholar
  11. 11.
    Yao, S.J., Song, Y.H.: Prediction of System Marginal Prices by Wavelet Transform and Neural Network. Elect. Mach. Power Syst. 19, 983–993 (2004)Google Scholar
  12. 12.
    Kim, C.I., Yu, I.K., Song, Y.H.: Prediction of System Marginal Price of Electricity using Wavelet Transform Analysis. Energy Convers. Manage. 43, 1839–1851 (2002)CrossRefGoogle Scholar
  13. 13.
    Nogales, F.J., Conejo, A.J.: Electricity Price Forecasting Through Transfer Function Models. Journal of Operational Research Society, 1–7 (2005)Google Scholar
  14. 14.
    Lu, X., Dong, Z.Y., Li, X.: Electricity Market Price Spike Forecast with Data Mining Techniques. Electric Power Systems Research 73, 19–29 (2005)CrossRefGoogle Scholar
  15. 15.
    Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-Ahead Electricity Price Forecasting Using the Wavelet Transform and ARIMA Models. IEEE Trans. Power Syst. 20, 1035–1042 (2005)CrossRefGoogle Scholar
  16. 16.
    Hu, M.Y., Zhang, G., Jiang, C.X., Patuwo, B.E.: A Cross-Validation Analysis of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting. Decision Science 30, 197–216 (1999)CrossRefGoogle Scholar
  17. 17.
    Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with Artificial Neural Networks: the State of the Art. International Journal of Forecasting 14, 35–62 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hsiao-Tien Pao
    • 1
  1. 1.Department of Management ScienceNational Chiao Tung UniversityTaiwan

Personalised recommendations