Combining Classifiers for Robust Face Detection

  • Lin-Lin Huang
  • Akinobu Shimizu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3972)


In this paper, we propose a face detection method by combining classifiers. We apply two classifiers using features extracted from complementary feature subspaces learned by principal component analysis (PCA). The two classifiers employ the same classification model named a polynomial neural network (PNN). The outputs of the two classifiers are fused to make the final decision. The effectiveness of the proposed method has been demonstrated in experimentals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Maio, D., Maltoni, D.: Real-Time Face Location on Gray-Level Static Images. Pattern Recognition 33, 1525–1539 (2000)CrossRefGoogle Scholar
  2. Liu, C.: A Bayesian Discriminating Features Method for Face Detection. IEEE Trans. Pattern Anal. Mach. Intell. 25, 725–740 (2003)CrossRefGoogle Scholar
  3. Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Trans. Pattern Anal. Mach. Intell. 20, 23–38 (1998)CrossRefGoogle Scholar
  4. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 34–58 (2002)CrossRefGoogle Scholar
  5. Kittler, J., Duin, P.W., Matas, J.: On Combining Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)CrossRefGoogle Scholar
  6. Huang, L.-L., Shimizu, A., Hagihara, Y., Kobatake, H.: Gradient Feature Extraction for Classification-Based Face Detection. Pattern Recognition 36, 2502–2511 (2003)Google Scholar
  7. Ali, K.M., Pazzani, M.J.: On the Link Between Error Correlation and Error Reduction in Decision Tree Ensembles. Technical Report, ICS-UCI, 95–138 (1995)Google Scholar
  8. Schürmann, J.: Pattern Classification: A Unified View of Statistical Pattern Recognition and Neural Networks. Wiley Interscience, Hoboken (1996)Google Scholar
  9. Robbins, H., Monro, S.: A Stochastic Approximation Method. Annals of Mathematics and Statistics 22, 400–407 (1951)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lin-Lin Huang
    • 1
  • Akinobu Shimizu
    • 2
  1. 1.Beijing University of Aeronautics and AstronauticsBeijingP.R. China
  2. 2.Tokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations