PD Control of Overhead Crane Systems with Neural Compensation

  • Rigoberto Toxqui Toxqui
  • Wen Yu
  • Xiaoou Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3972)


This paper considers the problem of PD control of overhead crane in the presence of uncertainty associated with crane dynamics. By using radial basis function neural networks, these uncertainties can be compensated effectively. This new neural control can resolve the two problems for overhead crane control: 1) decrease steady-state error of normal PD control. 2) guarantee stability via neural compensation. By Lyapunov method and input-to-state stability technique, we prove that these robust controllers with neural compensators are stable. Real-time experiments are presented to show the applicability of the approach presented in this paper.


Tracking Error Radial Basis Function Neural Network Model Reference Adaptive Control Gravity Compensation Overhead Crane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auernig, J.W., Troger, H.: Time Optimal Control of Overhead Cranes with Hoisting of the Payload. Automatica 23(2), 437–447 (1987)MATHCrossRefGoogle Scholar
  2. 2.
    Beeston, J.W.: Closed-Loop Time Optimatial Control of a Suspended Payload-a Design Study. In: Proc. of 4th IFAC World Congress, pp. 85–99 (1969)Google Scholar
  3. 3.
    Butler, H.,, Honderd, G., Van Amerongen, J.: Model Reference Adaptive Control of a Gantry Crane Scale Model. IEEE Contr. Syst. Mag. 11(1), 57–62 (1991)CrossRefGoogle Scholar
  4. 4.
    Corriga, G., Giua, A., Usai, G.: An Implicit Gain-Scheduling Controller for Cranes. IEEE Trans. Control Systems Technology 6(1), 15–20 (1998)CrossRefGoogle Scholar
  5. 5.
    Cybenko, G.: Approximation by Superposition of Sigmoidal Activation Function. Math. Control, Sig. Syst. 2(2), 303–314 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System. IEEE/ASME Transactions on Mechatronics 8(2), 418–423 (2003)CrossRefGoogle Scholar
  7. 7.
    Kelly, R.: A Tuning Procedure for Stable PID Control of Robot Manipulators. Robotica 13(1), 141–148 (1995)CrossRefGoogle Scholar
  8. 8.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)MATHGoogle Scholar
  9. 9.
    Lee, H.H.: Modeling and Control of a Three-Dimensional Overhead Crane. Journal of Dynamic Systems, Measurement, and Control 120(2), 471–476 (1998)CrossRefGoogle Scholar
  10. 10.
    Lee, H.H.: A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting. Journal of Dynamic Systems, Measurement, and Control 126(2), 359–364 (2004)CrossRefGoogle Scholar
  11. 11.
    Lewis, F.L., Parisini, T.: Neural Network Feedback Control with Guaranteed Stability. Int. J. Control 70(1), 337–339 (1998)CrossRefGoogle Scholar
  12. 12.
    Moustafa, K.A., Ebeid, A.M.: Nonlinear Modeling and Control of Overhead Crane Load Sway. Journal of Dynamic Systems, Measurement, and Control 110(1), 266–271 (1988)CrossRefGoogle Scholar
  13. 13.
    Mohan, B.M., Patel, A.V.: Analytical Structures and Analysis of the Simplest Fuzzy PD Controller. IEEE Trans. on Syst., Man and Cybern. Part B 32(2), 239–248 (2002)CrossRefGoogle Scholar
  14. 14.
    Noakes, M.W., Jansen, J.F.: Generalized Input for Damped-Vibration Control of Suspended Payloads. Journal of Robotics and Autonomous Systems 10(2), 199–205 (1992)CrossRefGoogle Scholar
  15. 15.
    Sawodny, O., Aschemann, H., Lahres, S.: An Automated Gantry Crane as a Large Workspcae Robot. Control Engineering Practice 10(11), 1323–1338 (2002)CrossRefGoogle Scholar
  16. 16.
    Sakawa, Y., Shindo, Y.: Optimal Control of Container Cranes. Automatica 18(1), 257–266 (1982)MATHCrossRefGoogle Scholar
  17. 17.
    Sontag, E.D., Wang, Y.: On Characterization of the Input-to-State Stability Property. System & Control Letters 24(3), 351–359 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yu, W., Li, X.: Some New Results on System Identification with Dynamic Neural Networks. IEEE Trans. Neural Networks 12(2), 412–417 (2001)CrossRefGoogle Scholar
  19. 19.
    Yu, J., Lewis, F.L., Huang, T.: Nonlinear Feedback Control of a Gantry Crane. In: Proc. of 1995 American Control Conference, pp. 4310–4315 (1995)Google Scholar
  20. 20.
    Yu, W., Li, X.: System Identification Using Adjustable RBF Neural Network with Stable Learning Algorithms. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 212–217. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rigoberto Toxqui Toxqui
    • 1
  • Wen Yu
    • 1
  • Xiaoou Li
    • 2
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMéxico D.F.México
  2. 2.Sección de Computación, Departamento de Ingeniería EléctricaCINVESTAV-IPNMéxico D.F.México

Personalised recommendations