Skip to main content

Performance Estimation of a Neural Network-Based Controller

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

Abstract

Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in adaptive control systems for their ability to cope with a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure a reliable system performance.

In this paper, we present a dynamic approach to estimate the performance of two types of neural networks employed in an adaptive flight controller: the validity index for the outputs of a Dynamic Cell Structure (DCS) network and confidence levels for the outputs of a Sigma-Pi (or MLP) network. Both tools provide statistical inference of the neural network predictions and an estimate of the current performance of the network. We further evaluate how the quality of each parameter of the network (e.g., weight) influences the output of the network by defining a metric for parameter sensitivity and parameter confidence for DCS and Sigma-Pi networks. Experimental results on the NASA F-15 flight control system demonstrate that our techniques effectively evaluate the network performance and provide validation inferences in a real-time manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrns, I., Bruske, J., Sommer, G.: On-line Learning with Dynamic Cell Structures. In: Fogelman-Soulié, F., Gallinari, P. (eds.) Proc. Int. Conf. Artificial Neural Networks, Nanterre, France, vol. 2. EC2, pp. 141–146 (1995)

    Google Scholar 

  2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Bruske, J., Sommer, G.: Dynamic Cell Structures. Proc. Neural Information Processing Systems 7, 497–504 (1995)

    Google Scholar 

  4. Calise, A., Rysdyk, R.: Nonlinear Adaptive Flight Control Using Neural Networks. IEEE Control Systems Magazine 21(6), 14–26 (1998)

    Article  Google Scholar 

  5. Fritzke, B.: Growing Cell Structures - a Self-organizing Network for Unsupervised and Supervised Learning. Neural Networks 7(9), 1441–1460 (1993)

    Article  Google Scholar 

  6. Fuller, E., Yerramalla, S., Cukic, B., Gururajan, S.: An Approach to Predicting Non-deterministic Neural Network Behavior. In: Proc. Intl. Joint Conference on Neural Networks, IJCNN (2005)

    Google Scholar 

  7. Gupta, P., Schumann, J.: A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems. In: Proc. High Assurance Software Engineering. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps. Springer, New York (1997)

    MATH  Google Scholar 

  9. Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using Radial Basis Functions to Approximate a Function and Its Error Bounds. IEEE Transactions on Neural Networks 3(4), 624–627 (1992)

    Article  Google Scholar 

  10. Liu, Y.: Validating A Neural Network-based Online Adaptive System. PhD thesis, West Virginia University, Morgantown (2005)

    Google Scholar 

  11. Liu, Y., Cukic, B., Jiang, M., Xu, Z.: Predicting with Confidence - An Improved Dynamic Cell Structure. In: Wang., L., Chen, K., Ong., Y.S. (eds.) Advances in Neural Computation. LNCS, vol. 1, pp. 750–759. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Mackall, D., Nelson, S., Schumann, J.: Verification and Validation of Neural Networks of Aerospace Applications. Technical Report CR-211409, NASA (2002)

    Google Scholar 

  13. Martinez, T., Schulten, K.: Topology Representing Networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  14. Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.K.: Neural Networks for Modeling and Control of Dynamic Systems. Springer, Heidelberg (2002)

    Google Scholar 

  15. Rumelhart, McClelland, The PDP Research Group: Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Rysdyk, R., Calise, A.: Fault Tolerant Flight Control via Adaptive Neural Network Augmentation. In: AIAA-98-4483, pp. 1722–1728 (1998)

    Google Scholar 

  17. Schumann, J., Gupta, P.: Monitoring the Performance of A Neuro-adaptive Controller. In: Fischer, R., Preuss, R., von Toussaint, U. (eds.) Proc. 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Sciences and Engineering (MAXENT), AIP, pp. 289–296 (2004)

    Google Scholar 

  18. Schumann, J., Gupta, P., Jacklin, S.: Toward Verification and Validation of Adaptive Aircraft Controllers. In: Proc. IEEE Aerospace Conference. IEEE Press, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schumann, J., Liu, Y. (2006). Performance Estimation of a Neural Network-Based Controller. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_145

Download citation

  • DOI: https://doi.org/10.1007/11760023_145

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics