Abstract
Biologically inspired soft computing paradigms such as neural networks are popular learning models adopted in adaptive control systems for their ability to cope with a changing environment. However, continual changes induce uncertainty that limits the applicability of conventional validation techniques to assure a reliable system performance.
In this paper, we present a dynamic approach to estimate the performance of two types of neural networks employed in an adaptive flight controller: the validity index for the outputs of a Dynamic Cell Structure (DCS) network and confidence levels for the outputs of a Sigma-Pi (or MLP) network. Both tools provide statistical inference of the neural network predictions and an estimate of the current performance of the network. We further evaluate how the quality of each parameter of the network (e.g., weight) influences the output of the network by defining a metric for parameter sensitivity and parameter confidence for DCS and Sigma-Pi networks. Experimental results on the NASA F-15 flight control system demonstrate that our techniques effectively evaluate the network performance and provide validation inferences in a real-time manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Ahrns, I., Bruske, J., Sommer, G.: On-line Learning with Dynamic Cell Structures. In: Fogelman-Soulié, F., Gallinari, P. (eds.) Proc. Int. Conf. Artificial Neural Networks, Nanterre, France, vol. 2. EC2, pp. 141–146 (1995)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Bruske, J., Sommer, G.: Dynamic Cell Structures. Proc. Neural Information Processing Systems 7, 497–504 (1995)
Calise, A., Rysdyk, R.: Nonlinear Adaptive Flight Control Using Neural Networks. IEEE Control Systems Magazine 21(6), 14–26 (1998)
Fritzke, B.: Growing Cell Structures - a Self-organizing Network for Unsupervised and Supervised Learning. Neural Networks 7(9), 1441–1460 (1993)
Fuller, E., Yerramalla, S., Cukic, B., Gururajan, S.: An Approach to Predicting Non-deterministic Neural Network Behavior. In: Proc. Intl. Joint Conference on Neural Networks, IJCNN (2005)
Gupta, P., Schumann, J.: A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems. In: Proc. High Assurance Software Engineering. IEEE Press, Los Alamitos (2004)
Kohonen, T.: Self-Organizing Maps. Springer, New York (1997)
Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using Radial Basis Functions to Approximate a Function and Its Error Bounds. IEEE Transactions on Neural Networks 3(4), 624–627 (1992)
Liu, Y.: Validating A Neural Network-based Online Adaptive System. PhD thesis, West Virginia University, Morgantown (2005)
Liu, Y., Cukic, B., Jiang, M., Xu, Z.: Predicting with Confidence - An Improved Dynamic Cell Structure. In: Wang., L., Chen, K., Ong., Y.S. (eds.) Advances in Neural Computation. LNCS, vol. 1, pp. 750–759. Springer, Heidelberg (2005)
Mackall, D., Nelson, S., Schumann, J.: Verification and Validation of Neural Networks of Aerospace Applications. Technical Report CR-211409, NASA (2002)
Martinez, T., Schulten, K.: Topology Representing Networks. Neural Networks 7(3), 507–522 (1994)
Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.K.: Neural Networks for Modeling and Control of Dynamic Systems. Springer, Heidelberg (2002)
Rumelhart, McClelland, The PDP Research Group: Parallel Distributed Processing. MIT Press, Cambridge (1986)
Rysdyk, R., Calise, A.: Fault Tolerant Flight Control via Adaptive Neural Network Augmentation. In: AIAA-98-4483, pp. 1722–1728 (1998)
Schumann, J., Gupta, P.: Monitoring the Performance of A Neuro-adaptive Controller. In: Fischer, R., Preuss, R., von Toussaint, U. (eds.) Proc. 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Sciences and Engineering (MAXENT), AIP, pp. 289–296 (2004)
Schumann, J., Gupta, P., Jacklin, S.: Toward Verification and Validation of Adaptive Aircraft Controllers. In: Proc. IEEE Aerospace Conference. IEEE Press, Los Alamitos (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schumann, J., Liu, Y. (2006). Performance Estimation of a Neural Network-Based Controller. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_145
Download citation
DOI: https://doi.org/10.1007/11760023_145
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34437-7
Online ISBN: 978-3-540-34438-4
eBook Packages: Computer ScienceComputer Science (R0)