KDA Plus KPCA for Face Recognition

  • Wenming Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3972)


Kernel discriminant analysis (KDA) and the kernel principal component analysis (KPCA), which are the extension of the linear discriminant analysis (LDA) and the principal component analysis (PCA), respectively, from linear domain to nonlinear domain via the kernel trick, are two very popular nonlinear feature extraction methods. In this paper, we present a new feature extraction algorithm by combing KDA and KPCA, and then apply it to the face recognition task. The experimental results on Yale face dataset show that the proposed method can significantly improve the performance both KDA and KPCA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.-R.: Fisher Discriminant Analysis with Kernels. In: Proceeding of IEEE Neural Networks for Signal Processing Workshop, pp. 41–48 (1999)Google Scholar
  2. 2.
    Baudat, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation 12(10), 2385–2404 (2000)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons Inc., New York (1973)zbMATHGoogle Scholar
  4. 4.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press Inc., London (1990)zbMATHGoogle Scholar
  5. 5.
    Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  6. 6.
    Duchene, J.: A Significant Plane for Two-class Discrimination Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 557–559 (1986)CrossRefGoogle Scholar
  7. 7.
    Siedlecki, W., Siedlecka, K., Sklansky, J.: An Overview of Mapping Techniques for Exploratory Pattern Analysis. Pattern Recognition 21(5), 411–429 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zheng, W., Zhao, L., Zou, C.: A Modified Algorithm for Generalized Discriminant Analysis. Neural Computation 16(6), 1283–1297 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Yang, M.H.: Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition using Kernel Methods. In: Proceedings of the Fifth International conference on Automatic Face and Gesture Recognition, pp. 215–220 (2002)Google Scholar
  10. 10.
    Samal, A., Iyengar, P.: Automatic Recognition and Analysis of Human Faces and Facial Expressions: a Survey. Pattern Recognition 25(1), 65–77 (1992)CrossRefGoogle Scholar
  11. 11.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition, a Literature Survey. ACM Computing Surveys 35(4), 399–458 (2000)CrossRefGoogle Scholar
  12. 12.
    Turk, M.A., Pentland, A.P.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  13. 13.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  14. 14.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face Recognition using Kernel Direct Discriminant Analysis Algorithms. IEEE Transactions on Neural Networks 14(1), 117–126 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wenming Zheng
    • 1
  1. 1.Research Center for Science of LearningSoutheast UniversityNanjingChina

Personalised recommendations