Advertisement

Learning with Single Quadratic Integrate-and-Fire Neuron

  • Deepak Mishra
  • Abhishek Yadav
  • Prem K. Kalra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

In this paper, a learning algorithm for a single Quadratic Integrate-and-Fire Neuron (QIFN) is proposed and tested for various applications in which a multilayer perceptron neural network is conventionally used. It is found that a single QIFN is sufficient for the applications that require a number of neurons in different layers of a conventional neural network. Several benchmark and real-life problems of classification and function-approximation have been illustrated.

Keywords

Temporal Summation Spike Neural Network Multilayer Perceptron Neural Network Phase Reset Curve Spike Neuron Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKenna, T., Davis, J., Zornetzer, S.F. (eds.): Single Neuron Computation. Academic Press, San Diego (1992)MATHGoogle Scholar
  2. 2.
    Anderson, J.A., Rosenfeld, E. (eds.): Neurocomputing:  Foundations of Research. MIT Press, Cambridge (1960)Google Scholar
  3. 3.
    Scholles, M., Hosticka, B.J., Kesper, M., Richert, P., Schwarz, M.: Biologically Inspired Artificial Neurons: Modeling and Applications. In: Proceedings of International Joint Conference on Neural Networks, vol. 3, pp. 2300–2303 (1993)Google Scholar
  4. 4.
    Iannella, N.,, B.A.: A Spiking Neural Network Architecture for Nonlinear Function Approximation. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 139–146 (1999)Google Scholar
  5. 5.
    Yadav, A., Mishra, D., Ray, S., Yadav, R.N., Kalra, P.K.: Learning with Single Integrate-and-Fire Neuron. In: Proceedings of International Joint Conference on Neural Network (2005)Google Scholar
  6. 6.
    Freeman, W.J.: Why Neural Networks Don t Yet Fly: Inquiry into the Neurodynamics of Biological Intelligence. In: Proceedings of IEEE International Conference on Neural Networks, vol. 2, pp. 1–7 (1988)Google Scholar
  7. 7.
    Hebb, D.: Organization of Behavior. John Weiley and Sons, New York (1949)Google Scholar
  8. 8.
    Widrow, B., Steams, S.: Adaptive Signal Processing. Prentice-Hall, Upper Saddle River (1985)MATHGoogle Scholar
  9. 9.
    Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)Google Scholar
  10. 10.
    Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)Google Scholar
  11. 11.
    Gerstner, W., Kistler, W.M.: Spiking Neuron Models: An Introduction. Cambridge University Press, New York (2002)MATHGoogle Scholar
  12. 12.
    McCulloch, W.S., Pitts, W.S.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Mathematical Biophysics 5, 18–27 (1943)Google Scholar
  13. 13.
    Sinha, M., Chaturvedi, D.K., Kalra, P.K.: Development of Flexible Neural Network. Journal of The Institution of Engineers (India) 83 (2002)Google Scholar
  14. 14.
    Feng, J., Buxton, H., Deng, Y.C.: Training the Integrate-and-Fire Model with the Informax Principle I. Journal of Physics–A 35, 2379–2394 (2002)MATHMathSciNetGoogle Scholar
  15. 15.
    Feng, J., Sun, Y., Buxton, H., Wei, G.: Training Integrate-and-Fire Neurons with the Informax Principle II. IEEE Trans. on Neural Networks 14(2), 326–336 (2003)CrossRefGoogle Scholar
  16. 16.
    Feng, J., Li, G.: Neuronal Models with Current Inputs. Journal of Physics–A 34, 1649–1664 (2001)MATHMathSciNetGoogle Scholar
  17. 17.
    Liu, S.C., Douglas, R.: Temporal Coding in a Silicon Network of Integrate-and-Fire Neurons. IEEE Trans. on Neural Networks 15(5), 1305–1314 (2004)CrossRefGoogle Scholar
  18. 18.
    Ermentrout, G.B.: Type I Membranes, Phase Resetting Curves, and Synchrony. Neural Computation 8(5), 979–1001 (1996)CrossRefGoogle Scholar
  19. 19.
    Ermentrout, G.B., Kopell, N.: Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation. SIAM Journal of Applied Mathematics 46(2), 233–253 (1986)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic Dynamics in Neuronal Networks I. The Journal of Neurophysiology 83(2), 808–827 (2000)Google Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Deepak Mishra
    • 1
  • Abhishek Yadav
    • 2
  • Prem K. Kalra
    • 1
  1. 1.Department of Electrical EngineeringIIT KanpurIndia
  2. 2.Department of Electrical EngineeringG.B. Pant University of Agri. & TechnologyPant NagarIndia

Personalised recommendations