A Delayed Lagrangian Network for Solving Quadratic Programming Problems with Equality Constraints

  • Qingshan Liu
  • Jun Wang
  • Jinde Cao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


In this paper, a delayed Lagrangian network is presented for solving quadratic programming problems. Based on some known results, the delay interval is determined to guarantee the asymptotic stability of the delayed neural network at the optimal solution. One simulation example is provided to show the effectiveness of the approach.


Neural Network Equilibrium Point Delay Interval Matrix Measure Convex Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tank, D.W., Hopfield, J.J.: Simple Neural Optimization Networks: An A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit. IEEE Trans. Circuits and Systems 33, 533–541 (1986)CrossRefGoogle Scholar
  2. 2.
    Kennedy, M.P., Chua, L.O.: Neural Networks for Nonlinear Programming. IEEE Trans. Circuits and Systems 35, 554–562 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bouzerdoum, A., Pattison, T.R.: Neural Network for Quadratic Optimization with Bound Constraints. IEEE Trans. Neural Networks 4, 293–304 (1993)CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Constantinides, A.G.: Lagrange Programming Neural Networks. IEEE Trans. Circuits and Systems II 39, 441–452 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Zhang, S., Zhu, X., Zou, L.H.: Second-order Neural Nets for Constrained Optimization. IEEE Trans. Neural Networks 3, 1021–1024 (1992)CrossRefGoogle Scholar
  6. 6.
    Wang, J.: A Deterministic Annealing Neural Network for Convex Programming. Neural Networks 7, 629–641 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Wang, J., Hu, Q., Jiang, D.: A Lagrangian Network for Kinematic Control of Redundant Robot Manipulators. IEEE Trans. Neural Networks 10, 1123–1132 (1999)CrossRefGoogle Scholar
  8. 8.
    Xia, Y.: Global Convergence Analysis of Lagrangian Networks. IEEE Trans. Circuits and Systems I 50, 818–822 (2003)CrossRefGoogle Scholar
  9. 9.
    Wang, J.: Primal and Dual Assignment Networks. IEEE Trans. Neural Networks 8, 784–790 (1997)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Xia, Y.: Analysis and Design of Primal-dual Assignment Networks. IEEE Trans. Neural Networks 9, 183–194 (1998)CrossRefGoogle Scholar
  11. 11.
    Xia, Y., Wang, J.: A General Projection Neural Network for Solving Monotone Variational Inequalities and Related Optimization Problems. IEEE Trans. Neural Networks 15, 318–328 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen, Y.H., Fang, S.C.: Neurocomputing with Time Delay Analysis for Solving Convex Quadratic Programming Problems. IEEE Trans. Neural Networks 11, 230–240 (2000)CrossRefGoogle Scholar
  13. 13.
    Mori, T., Fukuma, N., Kuwahara, M.: On an Estimate of the Decay Rate for Stable Linear Delay Systems. Int. J. Control 36, 95–97 (1982)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mori, T., Kokame, H.: Stability of \(\dot{x}(t)=Ax(t)+Bx(t-\tau)\). IEEE Trans. Automat. Control 34, 460–462 (1989)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley, New York (1993)MATHGoogle Scholar
  16. 16.
    Vidyasagar, M.: Nonlinear System Analysis. Prentice Hall, Englewood Cliffs (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qingshan Liu
    • 1
  • Jun Wang
    • 1
  • Jinde Cao
    • 2
  1. 1.Department of Automation and Computer-Aided EngineeringThe Chinese University of Hong KongShatin, New Territories, Hong Kong
  2. 2.Department of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations