Skip to main content

Cooperative Motor Learning Model for Cerebellar Control of Balance and Locomotion

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

  • 116 Accesses

Abstract

A computational model in the framework of reinforcement learning, called Cooperative Motor Learning (CML) model, is proposed to realize cerebellar control of balance and locomotion. In the CML model, cerebellum is a parallel pathway that the vermis and the flocculonodular lobe play a role of reflex actions executor, and that the intermediate zone of the cerebellum participates in initiating voluntary actions. During the training phase, the cerebral cortex provides the predictive error through climbing fiber to modulate the concurrently activated synapses between parallel fibers and purkinje cells. Meanwhile, the intermediate zone of the cerebellum computes the temporal difference (TD) error as a training signal for the cerebral cortex. In the simulation experiment for the balance of double inverted pendulum on a cart, a well-trained CML model can smoothly push the pendulum into the equilibrium position.

This work is supported by National Natural Science Foundation of China (60375017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S.: A Theory of Cerebellar Function. Mathematical Bioscience 10, 25–61 (1971)

    Article  Google Scholar 

  2. Marr, D.: A Theory of Cerebellar Cortex. Journal of Physiology 202, 437–470 (1969)

    Google Scholar 

  3. Ito, M.: Neural Design of the Cerebellar Motor Control System. Brain Research 40, 81–84 (1972)

    Article  Google Scholar 

  4. Kawato, M., Gomi, H.: A Computational Model of Four Regions of the Cerebellum Based on Feedback Error Learning. Biological Cybernetics 69, 95–103 (1992)

    Article  Google Scholar 

  5. Schultz, W., Dayan, P., Montague, P.R.: A Neural Substrate of Prediction and Reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  6. Schmajuk, N.A., Dicarlo, J.J.: A Neural Network Approach to Hippocampal Function in Classical Conditioning. Behavioral Neuroscience 105, 82–110 (1991)

    Article  Google Scholar 

  7. Bao, S., Chan, V.T., Merzenich, M.M.: Cortical Remodelling Induced by Activity of Ventral Tegmental Dopamine Neurons. Nature 412, 79–83 (2001)

    Article  Google Scholar 

  8. Thompson, R.F., Thompson, J.K., Kim, J.J., Krupa, D.J., Shinkman, P.G.: The Nature of Reinforcement in Cerebellar Learning. Neurobiology of learning and memory 70, 150–176 (1998)

    Article  Google Scholar 

  9. Fuster, J.M.: Executive Frontal Functions. Experimental Brain Research 133, 66–70 (2000)

    Article  Google Scholar 

  10. Suri, R.E., Sejnowski, T.J.: Spike Propagation Synchronized by Temporally Asymmetric Hebbian Learning. Biological Cybernetics 87, 440–445 (2002)

    Article  MATH  Google Scholar 

  11. Houk, J.C., Buckingham, J.T., Barto, A.G.: Models of the Cerebellum and Motor Learning. Behavioral and Brain Sciences 19, 368–383 (1996)

    Google Scholar 

  12. Williams, R.J., Zipser, D.: A Learning Algorithm for Continually Running Fully Re-current Neural Networks. Neural Computation 1, 270–280 (1989)

    Article  Google Scholar 

  13. Morton, S.M., Bastian, A.J.: Cerebellar Control of Balance and Locomotion. The Neuroscientist 10, 247–259 (2004)

    Article  Google Scholar 

  14. Stein, J.F., Glickstein, M.: Role of The Cerebellum in Visual Guidance of Movement. Physiological Reviews 74, 967–1017 (1992)

    Google Scholar 

  15. Matsumura, M., Sadato, N., Kochiyama, T., Nakamura, S., Naito, E., Matsunami, K., Ka-washima, R., Fukuda, H., Yonekura, Y.: Role of the Cerebellum in Implicit Motor Skill Learning: A PET Study. Brain Research Bulletin 63, 471–483 (2004)

    Article  Google Scholar 

  16. Yi, J.Q., Yubazaki, N., Hirota, K.: Stabilization Control of Series-type Double In-verted Pendulum Systems Using the SIRMs Dynamically Connected Fuzzy Inference Model. Artificial Intelligence in Engineering 15, 297–308 (2001)

    Article  Google Scholar 

  17. Barto, A.G., Sutton, R.S., Anderson, C.: Neuron-like Adaptive Elements That Can Solve Difficult Learning Control Problems. IEEE Transactions on Systems, Man, and Cybernetics 13, 834–846 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, M., Yu, N., Ruan, X. (2006). Cooperative Motor Learning Model for Cerebellar Control of Balance and Locomotion. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_5

Download citation

  • DOI: https://doi.org/10.1007/11759966_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics