Chaos and Bifurcation in a New Class of Simple Hopfield Neural Network

  • Yan Huang
  • Xiao-Song Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


A class of simple Hopfield neural networks with a parameter is investigated. Numerical simulations show that the simple Hopfield neural networks can display chaotic attractors and periodic orbits for different parameters. The Lyapunov exponents are calculated, the bifurcation plot and several important phase portraits are presented as well.


Periodic Orbit Lyapunov Exponent Phase Portrait Chaotic Attractor Double Period Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopfield, J.J.: Neurons with Graded Response Have Collective Computational Properties like those of Two-State Neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)CrossRefGoogle Scholar
  2. 2.
    Bersini, H., Sener, P.: The Connections between the Frustrated Chaos and the Intermittency Chaos in Small Hopfield Networks. Neural Networks 15(10), 1197–1204 (2002)CrossRefGoogle Scholar
  3. 3.
    Guevara, M.R., Glass, L.: Chaos in Neurobiology. IEEE Trans. Syst. Man Cyb. 13(9/10), 790–798 (1983)MATHGoogle Scholar
  4. 4.
    Babloyantz, A., Lourenco, B.C.: Chaos and Computation. Int. J. Neural Syst. 7(4), 461–471 (1996)CrossRefGoogle Scholar
  5. 5.
    Dror, G., Tsodyks, M.: Chaos in Neural Networks with Dynamic Synapses. Neurocomputing 32-33 (6), 365–370 (2000)CrossRefGoogle Scholar
  6. 6.
    Wheeler, D.W., Schieve, W.C.: Stability and Chaos in an Inertial Two-Neuron Systems. Physica D 105(7), 267–284 (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Bersini, H.: The Frustrated and Compositional Nature of Chaos in Small Hopfield Network. Neural Networks 11(6), 1017–1025 (1998)CrossRefGoogle Scholar
  8. 8.
    Li, Q.D., Yang, X.S., Yang, F.Y.: Hyperchaos in Hopfield-Type Neural Networks. Neurocomputing 67(8), 275–280 (2005)CrossRefGoogle Scholar
  9. 9.
    Yang, X.S., Yuan, Q.: Chaos and Transient Chaos in Simple Hopfield Neural Networks. Neurocomputing 69(12), 232–241 (2005)CrossRefGoogle Scholar
  10. 10.
    Yang, X.S., Tang, Y.: Horseshoes in Piecewise Continuous Maps. Chaos, Solitons & Fractals 19(3), 841–845 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yang, X.S.: Metric Horseshoes. Chaos, Solitons & Fractals 20(6), 1149–1156 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang, X.S., Li, H.-M., Huang, Y.: A Planar Topological Horseshoe Theory with Applications to Computer Verifications of Chaos. J. Phys. A: Math. Gen. 38(5), 4175–4185 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Huang, Y., Yang, X.S.: Horseshoes in Modified Chen’s Attractors. Chaos, Solitons and Fractals 26(10), 79–85 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Huang, Y., Yang, X.S.: Chaoticity of Some Chemical Attractors: A Computer Assisted Proof. Journal of Mathematical Chemistry 38(7), 107–117 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ramasubramanian, K., Sriram, M.S.: A Comparative Study of Computation of Lyapunov Spectra with Different Algorithms. Physica D 139(5), 72–86 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Eckmann, J.P., Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 57(7), 617–656 (1985)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan Huang
    • 1
    • 2
  • Xiao-Song Yang
    • 1
  1. 1.Department of MathematicsHuazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Department of Control Science and EngineeringHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations