Advertisement

Robust Periodicity in Recurrent Neural Network with Time Delays and Impulses

  • Yongqing Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

In this paper, the robust periodicity for recurrent neural networks with time delays and impulses is investigated. Based on Lyapunov method and fixed point theorem, a sufficient condition of global exponential robust stability of periodic solution is obtained.

Keywords

Neural Network Periodic Solution Robust Stability Recurrent Neural Network Cellular Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roska, T., Wu, C.W., Balsi, M., Chua, L.O.: Stability and Dynamics of Delaytype. General and Cellular Neural Networks. IEEE Trans. Circuits Syst. -I 39(6), 487–490 (1992)MATHCrossRefGoogle Scholar
  2. 2.
    Cao, J.: Global Stability Analysis in Delayed Cellular Neural Networks. Phys. Rev. E 59(5), 5940–5944 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Lakshmikanthan, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)Google Scholar
  4. 4.
    Wang, L., Lin, Y.: Global Robust Stability for Shunting Inhibitory CNNs with Delays. J. Neural Syst. 14(4), 229–235 (2004)CrossRefGoogle Scholar
  5. 5.
    Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Global Robust Exponential Stability Analysis for Interval Recurrent Neural Networks. Phys. Lett. A 325(2), 124–133 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Cao, J., Chen, T.: Globally Exponentially Robust Stability and Periodicity of Delayed Neural Networks. Chaos, Solitons and Fractals 22(4), 957–963 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zhao, H.: Global Exponential Stability and Periodicity of Cellular Neural Networks with Variable Delays. Phys. Let. A 336(3), 331–341 (2005)MATHCrossRefGoogle Scholar
  8. 8.
    Guo, S., Huang, L.: Periodic Oscillation for a Class of Neural Networks with Variable Coefficients. Nonlinear Analy. 6(6), 545–561 (2005)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Xu, D., Yang, Z.: Impulsive Delay Differential Inequality and Stability of Neural Networks. J. Math. Anal. Appl. 305(1), 107–120 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Li, Y., Lu, L.: Global Exponential Stability and Existence of Periodic Solution of Hopfield-type Neural Networks with Impulses. Phys. Lett. A 333(11), 62–71 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Akca, H., Alassar, R., Covachev, V., Covachev, Z., Zahrani, E.A.: Continuous-time Additive Hopfield-type Neural Networks with Impulses. J. of Math. Anal. Appl. 290(2), 436–451 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Gopalsamy, K.: Stability of Artificial Neural Networks with Impulses. Appl. Math. Comput. 154(3), 783–813 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cao, J., Wang, J.: Global Exponential Stability and Periodicity of Recurrent Neural Networks with Time Delays. IEEE Trans. Circuits Syst.-I 52(5), 920–931 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Cao, J., Wang, J.: Global Asymptotic and Robust Stability of Recurrent Neural Networks with Time Delays. IEEE Trans. Circuits Syst.-I 52(2), 417–426 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Cao, J., Chen, A., Huang, X.: Almost Periodic Attractor of Delayed Neural Networks with Variable Coefficients. Phys. Lett. A 340(6), 104–120 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Cao, J., Huang, D.-S., Qu, Y.: Global Robust Stability of Delayed Recurrent Neural Networks. Chaos, Solitons and Fractals 23(1), 221–229 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yongqing Yang
    • 1
    • 2
  1. 1.School of ScienceSouthern Yangtze UniversityWuxiChina
  2. 2.Department of MathematicsSoutheast UniversityNanjingChina

Personalised recommendations