Advertisement

Stochastic Robust Stability of Markovian Jump Nonlinear Uncertain Neural Networks with Wiener Process

  • Xuyang Lou
  • Baotong Cui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

This paper deals with the stochastic robust stability problem for Markovian jump nonlinear uncertain neural networks (MJNUNNs) with Wiener process. Some criteria for stochastic robust stability of Markovian jump nonlinear uncertain neural networks are derived, even if the system contains Wiener process. All the derived results are presented in terms of linear matrix inequality.

Keywords

Linear Matrix Inequality Exponential Stability Wiener Process Markovian Jump Linear Matrix Inequality Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rong, L.B.: LMI Approach for Global Periodicity of Neural Networks with Time-Varying Delays. IEEE Trans. Circuits Systems I: Regular Papers 52(7), 1451–1458 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cao, J., Liang, J.: Boundedness and Stability for Cohen-Grossberg Neural Network with Time-Varying Delays. J. Math. Anal. Appl. 296(2), 665–685 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lu, H.T.: Absolute Exponential Stability Analysis of Delayed Neural Networks. Physics Letters A 336(2-3), 133–140 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Lu, H.T., He, Z.Y.: Global Exponential Stability of Delayed Competitive Neural Networks with Different Time Scales. Neural Networks 18(3), 243–250 (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Cao, J.D., Huang, D.S., Qu, Y.Z.: Global Robust Stability of Delayed Recurrent Neural Networks. Chaos, Solitons and Fractals 23(1), 221–229 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao, J.D., Chen, T.P.: Globally Exponentially Robust Stability and Periodicity of Delayed Neural Networks. Chaos, Solitons and Fractals 22(4), 957–963 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lou, X.Y., Cui, B.T.: Global Asymptotic Stability of BAM Neural Networks with Distributed Delays and Reaction-Diffusion Terms. Chaos, Solitons and Fractals 27(5), 1347–1354 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huang, X., Cao, J.D., Huang, D.S.: LMI-Based Approach for Delay-dependent Exponential Stability Analysis of BAM Neural Networks. Chaos, Solitons and Fractals 24(3), 885–898 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cao, J.D.: On Exponential Stability and Periodic Solutions of CNNs with Delays. Phys. Lett. A 267(5-6), 312–318 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cao, J.D., Zhou, D.M.: Stability Analysis of Delayed Cellular Neural Networks. Neural Networks 11(9), 1601–1605 (1998)CrossRefGoogle Scholar
  11. 11.
    Cao, J.D., Jiang, Q.H.: An Analysis of Periodic Solutions of Bi-Directional Associative Memory Networks with Time-Varying Delays. Physics Letters A 330(3-4), 203–213 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Liang, J.L., Cao, J.D., Ho, D.W.C.: Discrete-Time Bidirectional Associative Memory Neural Networks with Variable Delays. Physics Letters A 335(2-3), 226–234 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Li, C.D., Liao, X.F., Zhang, R.: Delay-Dependent Exponential Stability Analysis of Bi-Directional Associative Memory Neural Networks with Time Delay: an LMI Approach. Chaos, Solitons and Fractals 24(4), 1119–1134 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mao, X.R.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997)Google Scholar
  15. 15.
    Liao, X.X., Mao, X.R.: Exponential Stability and Instability of Stochastic Neural Networks. Stochast. Anal. Appl. 14(2), 165–185 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wan, L., Sun, J.H.: Mean Square Exponential Stability of Stochastic Delayed Hopfield Neural Networks. Physics Letters A 343(4), 306–318 (2005)MATHCrossRefGoogle Scholar
  17. 17.
    Huang, H., Ho, D.W.C., Lam, J.: Stochastic Stability Analysis of Fuzzy Hopfield Neural Networks with Time-Varying Delays. IEEE Trans. Circuits Systems II: Express Briefs 52(5), 251–255 (2005)CrossRefGoogle Scholar
  18. 18.
    Xie, L.: Stochastic Robust Stability Analysis for Markovian Jumping Neural Networks with Time Delays. In: The 2005 IEEE International Conference on Networking, Sensing and Control, pp. 923–928 (2005)Google Scholar
  19. 19.
    Liao, X.X., Mao, X.R.: Stability of Stochastic Neural Networks. Neural, Para. Sci. Comput. 4(2), 205–224 (1996)MATHMathSciNetGoogle Scholar
  20. 20.
    Blythe, S., Mao, X.R., Shah, A.: Razumikhin-Type Theorems on Stability of Stochastic Neural Networks with Delays. Stochast. Anal. Appl. 19(1), 85–101 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Amold, L.: Stochastic Differential Equations: Theory and Applications. Loh Wilry and Sons, New York (1974)Google Scholar
  22. 22.
    Boukas, E.K., Liu, K.: Deterministic and Stochastic Systems with Time-Delay. Birkhauser, Boston (2002)Google Scholar
  23. 23.
    Raouf, J., Boukas, E.K.: Robust Stabilization of Markovian Jump Linear Singular Systems with Wiener Process. In: Proc. of the 2004 American Control Conference, pp. 3170–3175. Boston, Massachusetts (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xuyang Lou
    • 1
  • Baotong Cui
    • 1
  1. 1.Research Center of Control Science and EngineeringSouthern Yangtze UniversityWuxiP.R. China

Personalised recommendations