Advertisement

Estimating Fractal Intrinsic Dimension from the Neighborhood

  • Qutang Cai
  • Changshui Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

This paper proposes a new method for fractal intrinsic dimension(ID) estimation. Local fractal features are extracted and combined to obtain the estimation. Compared with the contemporary methods for fractal ID estimation, the proposed method requires lower computation, can reach accurate results and can be flexibly extended. Both the theoretical analysis and experimental results show its validity.

Keywords

Estimation Result Intrinsic Dimension Minimal Covering Iterate Function System Nonlinear Dimensionality Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar
  2. 2.
    Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  3. 3.
    Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  4. 4.
    Bishop, C.M., Svensén, M., Williams, C.K.I.: The Generative Topographic Mapping. Neural Computation 10(1), 215–235 (1998)CrossRefGoogle Scholar
  5. 5.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1990)MATHGoogle Scholar
  6. 6.
    Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press, Boston (1993)MATHGoogle Scholar
  7. 7.
    Mandelbrot, B.B.: Fractal: Form, Chance, and Dimension. Freeman, San Francisco (1977)Google Scholar
  8. 8.
    Camastra, F.: Data Dimensionality Estimation Methods: A Survey. Pattern Recognition 36(12), 2945–2954 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Grassberger, P., Procaccia, I.: Measuring The Strangeness of Strange Attractors. Physica D9, 189–208 (1983)MathSciNetGoogle Scholar
  10. 10.
    Camastra, F., Vinciarelli, A.: Estimating Intrinsic Dimension of Data with A Fractal-based Approach. IEEE Trans. Anal. Mach. Intell. 24(10), 1404–1407 (2002)CrossRefGoogle Scholar
  11. 11.
    Kegl, B.: Intrinsic Dimension Estimation Using Packing Numbers. In: Advances in Neural Information Processing Systems, vol. 15, pp. 681–688. MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qutang Cai
    • 1
  • Changshui Zhang
    • 1
  1. 1.National Laboratory of Information Science and Technology, Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations