Determine Discounting Coefficient in Data Fusion Based on Fuzzy ART Neural Network

  • Dong Sun
  • Yong Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


The method of discounting coefficient is an efficient way to solve the problem of evidence conflicts. In this paper a new method to calculate the discounting coefficient of evidence based on evidence clustering by the way of fuzzy ART neural network is proposed. The discounted evidence is taken into account in belief function combination. A numerical example is shown to illustrate the use of the proposed method to handle conflicting evidence.


Combination Rule Belief Function Evidence Theory Basic Probability Assignment Transferable Belief Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shafer, G.A.: Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  2. 2.
    Dempster, A.P.: Upper and Lower Probabilities induced by a Multivalued Mapping. Annals of Mathematical Statistics 38, 325–339 (1967)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liau, C.J., Lin, B.I.: Possibilistic Reasoning-a mini-survey and uniform Semantics. Artificial Intelligence 88(1), 163–193 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Murphy, R.R.: Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots. IEEE Transaction on Robotics and Automation 14(1), 197–206 (1998)CrossRefGoogle Scholar
  5. 5.
    Pohl, C., Van Genderen, J.L.: Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. International Journal of Remote Sensing 19(1), 823–854 (1998)CrossRefGoogle Scholar
  6. 6.
    Beynon, M., Curry, B., Morgan, P.: The Dempster-Shafer Theory of Evidence: An Alternative Approach To Multicriteria Decision Modeling. Omega 28(1), 37–50 (2000)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Zouhal, L.M., Denoeux, T.: An Evidence-theoretic K-NN Rule with Parameter Optimization. IEEE Transactions on Systems, Man and Cybernetics 28(1), 263–271 (1998)Google Scholar
  8. 8.
    Zadeh, L.: A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination. AI Magazine 7(2), 85–90 (1986)Google Scholar
  9. 9.
    Yager, R.R.: On the Dempster-Shafer Framework and New Combination Rules. Information Sciences 41(1), 93–138 (1987)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Representation and Combination of Uncertainty with Belief Functions and Possibility Measures. Computational Intelligence 4(1), 244–264 (1998)Google Scholar
  11. 11.
    Smets, P.: The Combination of Evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 447–458 (1990)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66(1), 191–234 (1994)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Smets, P.: Resolving Misunderstandings about Belief Functions. International Journal of Approximate Reasoning 6(1), 321–344 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Lefevre, E.: Belief Function Combination and Conflict Management. Information Fusion 3(1), 149–162 (2002)CrossRefGoogle Scholar
  15. 15.
    Audun, J.: The Consensus Operator For Combining Beliefs. Artificial Intelligence 141(1), 157–170 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Haenni, R.: Comments on ”About the Belief Function Combination and The Conflict Management Problem” Real Alternatives. Information Fusion 3(1), 237–239 (2002)CrossRefGoogle Scholar
  17. 17.
    Murphy, C.K.: Combining Belief Functions When Evidence Conflicts. Decision Support Systems 29(7), 1–9 (2000)CrossRefGoogle Scholar
  18. 18.
    Yong, D., Shi, W.K., Zhu, Z.F.: Combining Belief Functions Based on Distance of Evidence. Decision support system 38(1), 489–493 (2004)Google Scholar
  19. 19.
    Sally, M., Bryan, S.: Using Evidence Theory for The Integration of Distributed Databases. International Journal of Intelligent System 12(1), 763–776 (1997)CrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: A Simple View of the Dempster-Shafer Theory of Evidence and its Implication for the Rule of Combination. AI Magazine 7(1), 85–90 (1986)Google Scholar
  21. 21.
    Carpenter, G.A., Stephen, G.: Fuzzy ART Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4(1), 759–771 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dong Sun
    • 1
  • Yong Deng
    • 1
  1. 1.Department 8, Institute of Automatic Detection (810)Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations