Advertisement

Two-Stage Blind Deconvolution for V-BLAST OFDM System

  • Feng Jiang
  • Liqing Zhang
  • Bin Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

In this paper, we integrate orthogonal frequency-division multiplexing (OFDM) technique with vertical Bell Labs layered space-time (V-BLAST) architecture as a promising solution for enhancing the data rates of wireless communication systems, and propose a new blind deconvolution method. A two-stage algorithm is developed to estimate the channel parameters. At first stage, we propose an algorithm based on the second order statistics to decorrelate the sensor signals. After decorrelation, we apply instantaneous demixing algorithm to separate the signals at the second stage. Simulation results demonstrate the validity and the performance of the proposed algorithms.

Keywords

Natural Gradient Blind Deconvolution European Telecommunication Standard Institute European Telecommunication Standard Institute MIMO Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amari, S.: Natural Gradient Works Efficiently in Learning. Neural Computation 10, 251–276 (1998)CrossRefGoogle Scholar
  2. 2.
    Amari, S., Cichocki, A.: Adaptive Blind Signal Processing - Neural Network Approaches. Proceedings of the IEEE 86(10), 2026–2048 (1998)CrossRefGoogle Scholar
  3. 3.
    Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel. In: Proc IEEE ISSSE 1998 (1998)Google Scholar
  4. 4.
    Zhang, L.Q., Cichocki, A.: Blind Deconvolution of Dynamical Systems: A State-Space Approach. Signal Processing 4(2), 111–130 (2000)Google Scholar
  5. 5.
    Zelst, A.v.: Space Division Multiplexing Algorithms. In: 10th mediterranean Electrotech. Conf., vol. 3, pp. 1218–1221 (2000)Google Scholar
  6. 6.
    Wang, Z., Giannakis, G.B.: Wireless Multicarrier Communication. IEEE Signal Processing Mag. 17(3), 29–49 (2000)CrossRefGoogle Scholar
  7. 7.
    Inouye, Y., Ohno, S.: Adaptive Algorithms for Implementing the Single-Stage Criterion for Multichannel Blind Deconvolution. In: Proc. of 5th Int. Conf. on Neural Information Processing, ICONIP 1998, Kitakyushu, Japan, October 21-23, pp. 733–736 (1998)Google Scholar
  8. 8.
    Zhang, L.Q., Amari, S., Cichocki, A.: Multichannel Blind Deconvolution of Non-Minimum Phase Systems Using Filter Decomposition. IEEE Trans. Signal Processing 52(5), 1430–1442 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Xia, B., Zhang, L.Q.: Multichannel Blind Deconvolution Using a Novel Filter Decomposition Method. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1202–1207. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Feng Jiang
    • 1
  • Liqing Zhang
    • 1
  • Bin Xia
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong University 

Personalised recommendations