Multichannel Blind Deconvolution Using a Novel Filter Decomposition Method

  • Bin Xia
  • Liqing Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


In our previous work [11], we introduced a filter decomposition method for blind deconvolution in non-minimum phase system. To simplify the deconvolution procedure, we further study the demixing filter and modify the cascade structure of demixing filter. In this paper, we introduce a novel two-stage algorithm for blind deconvolution. In first stage, we present a permutable cascade structure which constructed by a causal filter and an anti-causal scalar filter. Then, we develop SOS-based algorithm for causal filter and derive a natural gradient algorithm for anti-causal scalar filter. At second stage, we apply an instantaneous ICA algorithm to eliminate the residual instantaneous mixtures. Computer simulations show the validity and effectiveness of this approach.


Blind Signal Blind Deconvolution Blind Separation Cascade Structure Decision Feedback Equalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amari, S.: Natural Gradient Works Efficiently in Learning. Neural Computation 10(2), 251–276 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Amari, S., Cichocki, A., Yang, H.H.: A New Learning Algorithm for Blind Signal Separation. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 8 (NIPS 1995), pp. 757–763. MIT Press, Cambridge (1996)Google Scholar
  3. 3.
    Amari, S., Douglas, S., Cichocki, A., Yang, H.H.: Novel On-line Algorithms for Blind Deconvolution Using Natural Gradient Approach. In: Proc. 11th IFAC Symposium on System Identification, SYSID 1997, Kitakyushu, Japan, July 1997, pp. 1057–1062 (1997)Google Scholar
  4. 4.
    Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)CrossRefGoogle Scholar
  5. 5.
    Cichochi, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley, Chichester (May 2002)CrossRefGoogle Scholar
  6. 6.
    Labat, J., Macchi, O., Laot, C.: Adaptive Decision Feedback Equalization: Can You Skip the Training Period. IEEE Trans. on communication (46), 921–930 (1998)Google Scholar
  7. 7.
    Tong, L., Xu, G., Kailath, T.: Blind Identification and Equalization Base on Second-Order Statistics: A Time Domain Approach. IEEE Trans. Information Theory (40), 340–349 (1994)Google Scholar
  8. 8.
    Tugnait, J.K., Huang, B.: Multistep Linear Predictors-Based Blind Identification and Equalization of Multiple-Input Multiple-Output Channels. IEEE Trans. on Signal Processing (48), 26–28 (2000)Google Scholar
  9. 9.
    Waheed, K., Salam, F.M.: Cascaded Structures for Blind Source Recovery. In: 45th IEEE int’l Midwest Symposium on Circuits and Systems, Tulsa, Oklahoma, vol. 1, pp. 656–659 (2002)Google Scholar
  10. 10.
    Xia, B., Zhang, L.Q.: Combining Second & High Order Statistics Method in Multichannel Blind Deconvolution. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Xia, B., Zhang, L.Q.: Multichannel Blind Deconvolution of Non-minimum Phase System Using Cascade Structure. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1186–1191. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Zhang, L.Q., Amari, S., Cichocki, A.: Multichannel Blind Deconvolution of Non-minimum Phase Systems Using Filter Decomposition. IEEE Trans. Signal Processing 52(5), 1430–1442 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zhang, L.Q., Cichocki, A., Amari, S.: Multichannel Blind Deconvolution of Nonminimum Phase Systems Using Information Backpropagation. In: Proceedings of ICONIP 1999, Perth, Australia, pp. 210–216 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bin Xia
    • 1
  • Liqing Zhang
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations