Estimation of Delays and Attenuations for Underdetermined BSS in Frequency Domain

  • Ronghua Li
  • Ming Xiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


Underdetermined blind delayed source problem is studied in this paper. Firstly, on the basis of the searching-and-averaging-based method in frequency domain, the algorithm was extended to blind delay source model. Secondly, a new cost function for estimating the delay of observed signal was present; the delay was inferred in the single-signal intervals. Finally, the delayed sound experiments demonstrate its performance.


Independent Component Analysis Sparse Representation Independent Component Analysis Blind Source Separation Blind Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Y., Wang, J.: Sequential Blind Extraction of Instantaneously Mixed Sources. IEEE Trans on Signal Processing 50(5), 997–1006 (2002)CrossRefGoogle Scholar
  2. 2.
    Xie, S., He, Z., Fu, Y.: A Note on Stone’s Conjecture of Blind Signal Separation. Neural Computation 17(2), 321–330 (2005)CrossRefGoogle Scholar
  3. 3.
    Cardoso, J.F.: Blind Signals Separation: Statistical Principles. Proc. IEEE 86(10), 1129–1159 (1998)CrossRefGoogle Scholar
  4. 4.
    Zhang, J., Xie, S., He, Z.: Separability Theory for Blind Signal Separation. Zidonghua Xuebao/Acta Automatica Sinica 30(5), 337–344 (2004)MathSciNetGoogle Scholar
  5. 5.
    He, Z., Xie, S., Zhang, J.: Geometrical Algorithm of Blind Source Separation Based on QR Decomposition. Kongzhi Lilun Yu Yinyong/Control Theory and Applications 22(2), 17–22 (2005)Google Scholar
  6. 6.
    Li, Y., Wang, J., Zurada, J.: Blind Extraction of Singularly Mixed Source Signals.  IEEE Trans on Neural Networks 11(6), 1413–1422 (2000)CrossRefGoogle Scholar
  7. 7.
    Bofill, P., Zibulevsky, M.: Underdetermined Blind Source Separation Using Sparse Representations. Signal Processing 81, 2353–2362 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Theis, F.J., Lang, W.E., Puntonet., C.G.: A geometric Algorithm for Overcomplete Linear ICA. Neurocomputing 56, 381–398 (2004)CrossRefGoogle Scholar
  9. 9.
    He, Z., Xie, S., Fu, Y.: FIR Convolutive BSS Based on Sparse Representation. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 532–537. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Andrzej, C., Amari, S.: Analysis of Sparse Representation and Blind Source Separation. Neural Computation 16(6), 1193–1234 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Bofill, P.: Underdetermined Blind Separation of Delayed Sound Sources in the Frequency Domain. Neurocomputing 55, 627–641 (2003)CrossRefGoogle Scholar
  12. 12.
    Xiao, M., Xie, S., Fu, Y.: A Novel Approach for Underdetermined Blind Source in the Frequency Domain. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 484–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Xiao, M., Xie, S., Fu, Y.: A Searching-and-Averaging-Based Method for Underdetermined Blind Speech Signals Separation in Time Domain. Has been submitted to Science in China Series E-Technological Sciences (November 2004)Google Scholar
  14. 14.
    Xie, S., Xiao, M., Fu, Y.: A Novel Approach for Underdetermined Blind Speech Signal Separation DCDIS. In: Proceedings 3: Impulsive Dynamical Systems and Applications, pp. 1846–1853 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ronghua Li
    • 1
  • Ming Xiao
    • 1
    • 2
  1. 1.School of Electrics & Information EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of computer& Electrics Information EngineeringMaoming CollegeMaomingChina

Personalised recommendations