Local Stability Analysis of Maximum Nongaussianity Estimation in Independent Component Analysis

  • Gang Wang
  • Xin Xu
  • Dewen Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


The local stability analysis of maximum nongaussianity estimation (MNE) is investigated for nonquadratic functions in independent component analysis (ICA). Using trigonometric function, we first derive the local stability condition of MNE for nonquadratic functions without any approximation as has been made in previous literatures. The research shows that the condition is essentially the generalization of Xu’s one-bit-matching ICA theorem in MNE. Secondly, based on the generalized Gaussian model (GGM), the availability of local stability condition and robustness to outliers are addressed for three typical nonquadratic functions for various distributed independent components.


Independent Component Analysis Local Stability Independent Component Analysis Blind Source Separation Independent Component Analysis Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheung, C.C., Xu, L.: Some Global and Local Convergence Analysis on the Information-Theoretic Independent Component Analysis Approach. Neurocomputing 30, 79–102 (2000)CrossRefGoogle Scholar
  2. 2.
    Amari, S., Chen, T.P., Cichocki, A.: Stability Analysis of Adaptive Blind Source Separation. Neural Networks 10, 1345–1351 (1997)CrossRefGoogle Scholar
  3. 3.
    Lee, T.-W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11(2), 417–441 (1999)CrossRefGoogle Scholar
  4. 4.
    Xu, L.: One-bit-matching ICA theorem convex-concave programming and combinatorial optimization. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 5–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networks 10, 626–634 (1999)CrossRefGoogle Scholar
  6. 6.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, 1st edn. John Wiley, New York (2001)CrossRefGoogle Scholar
  7. 7.
    Regalia, P.A., Kofidis, E.: Monotonic Convergence of Fixed-Point Algorithm for ICA. IEEE Trans. Neural Networks 14, 943–949 (2003)CrossRefGoogle Scholar
  8. 8.
    Wang, G., Xu, X., Hu, D.: Global convergence of FastICA: theoretical analysis and practical considerations. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 700–705. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Cichocki, A., Amari, S.: Self-adaptive blind source separation based on activation function adaptation. IEEE Trans. Neural Networks 15(2), 233–244 (2004)CrossRefGoogle Scholar
  10. 10.
    Liu, Z.Y., Chiu, K.C., Xu, L.: One-Bite-Matching Conjecture for Independent Component Analysis. Neural Computation 16, 383–399 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gang Wang
    • 1
    • 2
  • Xin Xu
    • 2
  • Dewen Hu
    • 2
  1. 1.Telecommunication Engineering InstituteAir Force Engineering UniversityXi’anP.R.C.
  2. 2.College of Mechatronics and AutomationNational University of Defense TechnologyChangshaP.R.C.

Personalised recommendations