Skip to main content

SVMV – A Novel Algorithm for the Visualization of SVM Classification Results

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

In this paper, a novel algorithm, called support vector machine visualization (SVMV), is proposed. The SVMV algorithm is based on support vector machine (SVM) and self-organizing mapping (SOM). High dimensional data and binary classification results can be visualized in a low dimensional space. Compared with other traditional visualization algorithms like SOM and Sammon’s mapping algorithm, the SVMV algorithm can deliver better visualization on classification results. Experimental results corroborate the effectiveness and usefulness of SVMV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson, J.E.: A User’s Guide to Principal Components. John Wiley & Sons, New York (1991)

    Book  MATH  Google Scholar 

  2. Cox, T.C., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC, Boca Raton (2000)

    Book  Google Scholar 

  3. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  4. Sammon, J.W.: A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. on Computers 18(5), 401–409 (1969)

    Article  Google Scholar 

  5. Demartines, P., Hérault, J.: Curvilinear Component Analysis: A Self-Organizing Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans. on Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Non-linear Dimensionality Reduction. Science 290(12), 2319–2323 (2000)

    Article  Google Scholar 

  7. Li, X.Z.: Visualization of High-Dimensional Data with Relational Perspective Map. Information Visualization 3(1), 49–59 (2004)

    Article  Google Scholar 

  8. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  9. Schölkopf, B., Smola, A.: New Support Vector Algorithms. Neural Computation 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  10. Wu, S.T., Chow, W.S.: Support Vector Visualization and Clustering Using Self-Organizing Map and Support Vector One-Class Classification. In: Proc. of IEEE Int. Joint Conf. on Neural Networks, Portland, USA, pp. 803–808 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Wu, S., Wang, X., Li, Q. (2006). SVMV – A Novel Algorithm for the Visualization of SVM Classification Results. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_142

Download citation

  • DOI: https://doi.org/10.1007/11759966_142

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics