Advertisement

Building Support Vector Machine Alternative Using Algorithms of Computational Geometry

  • Marek Bundzel
  • Tomáš Kasanický
  • Baltazár Frankovič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)

Abstract

The task of pattern recognition is a task of division of a feature space into regions separating the training examples belonging to different classes. Support Vector Machines (SVM) identify the most borderline examples called support vectors and use them to determine discrimination hyperplanes (hyper–curves). In this paper a pattern recognition method is proposed which represents an alternative to SVM algorithm. Support vectors are identified using selected methods of computational geometry in the original space of features i.e. not in the transformed space determined partially by the kernel function of SVM. The proposed algorithm enables usage of kernel functions. The separation task is reduced to a search for an optimal separating hyperplane or a Winner Takes All (WTA) principle is applied.

Keywords

Support Vector Machine Support Vector Kernel Function Computational Geometry Delaunay Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delaunay, B.: Sur la sphère vide. Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk (1934)Google Scholar
  2. 2.
    Gabriel, K.R., Sokal, R.R.: A New Statistical Approach to Geographic Variation Analysis. Systematic Zoology 18, 259–278 (1969)CrossRefGoogle Scholar
  3. 3.
    Vapnik, V., Chevornenkis, A.: Theory of Pattern Recognition (in Russian). In: Wapnik, W., Tscherwonenkis, A. (eds.) Theorie der Zeichenerkennung (German Translation), Nauka, Moscow. Akademie-Verlag, Berlin (1979)Google Scholar
  4. 4.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  5. 5.
    Joachims, T.: Making Large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Zhang, W., King, I.: A Study of the Relationship Between Support Vector Machine and Gabriel Graph. In: Proc. of Int. Joint Conference on Neural Networks. IEEE, Los Alamitos (2002)Google Scholar
  7. 7.
    Bundzel M.: Structural and Parametrical Adaptation of Artificial Neural Networks Using Principles of Support Vector Machines. Ph.D. Thesis, Technical University of Kosice, Slovakia, Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence (2005), http://neuron.tuke.sk/~bundzel/Ph.D-thesis/main.pdf
  8. 8.
    Urquhart, R.: Graph Theoretical Clustering Based on Limited Neighborhood Sets. Pattern Recognition 15(3), 173–187 (1982)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Roobaert, D.: DirectSVM: A Fast and Simple Support Vector Machine Perceptron. In: Proc. of International Workshop on Neural Networks for Signal Processing (IEEE), Sydney, Australia, pp. 356–365 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marek Bundzel
    • 1
  • Tomáš Kasanický
    • 1
    • 2
  • Baltazár Frankovič
    • 2
  1. 1.Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial IntelligenceTechnical University of KošiceKošiceSlovak Republic
  2. 2.Institute of InformaticsSlovak Academy of SciencesBratislava 45Slovak Republic

Personalised recommendations