Genetic Granular Kernel Methods for Cyclooxygenase-2 Inhibitor Activity Comparison

  • Bo Jin
  • Yan-Qing Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3971)


How to design powerful and flexible kernels to improve the system performance is an important topic in kernel based classification. In this paper, we present a new granular kernel method to improve the performance of Support Vector Machines (SVMs). In the system, genetic algorithms (GAs) are used to generate feature granules and optimize them together with fusions and parameters of granular kernels. The new granular kernel method is used for cyclooxygenase-2 inhibitor activity comparison. Experimental results show that the new method can achieve better performance than SVMs with traditional RBF kernels in terms of prediction accuracy.


Prediction Accuracy Convolution Kernel Training Accuracy String Kernel Support Vector Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boser, B., Guyon, I., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: Proc. Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)Google Scholar
  2. 2.
    Cortes, C., Vapnik, V.N.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  3. 3.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)MATHGoogle Scholar
  4. 4.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  5. 5.
    Jin, B., Zhang, Y.-Q., Wang, B.: Evolutionary Granular Kernel Trees and Applications in Drug Activity Comparisons. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 121–126 (2005)Google Scholar
  6. 6.
    Haussler, D.: Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz (1999)Google Scholar
  7. 7.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, New York (1999)Google Scholar
  8. 8.
    Lodhi, H., Shawe-Taylor, J., Christianini, N., Watkins, C.: Text Classification Using String Kernels. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13. MIT Press, Cambridge (2001)Google Scholar
  9. 9.
    Collins, M., Duffy, N.: Convolution Kernels for Natural Language. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14. MIT Press, Cambridge (2002)Google Scholar
  10. 10.
    Kashima, H., Koyanagi, T.: Kernels for Semi-Structured Data. In: Proceedings of The Nineteenth International Conference on Machine Learning, pp. 291–298 (2002)Google Scholar
  11. 11.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)MATHGoogle Scholar
  12. 12.
    Kauffman, G.W., Jurs, P.C.: QSAR and K-Nearest Neighbor Classification Analysis of Selective Cyclooxygenase-2 Inhibitors Using Topologically-Based Numerical Descriptors. J. Chem. Inf. Comput. Sci. 41(6), 1553–1560 (2001)Google Scholar
  13. 13.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification. Department of Computer Science and Information Engineering. National Taiwan University (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bo Jin
    • 1
  • Yan-Qing Zhang
    • 1
  1. 1.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations