Multiservice IP Network QoS Parameters Estimation in Presence of Self-similar Traffic

  • Anatoly M. Galkin
  • Olga A. Simonina
  • Gennady G. Yanovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4003)


This study investigates key properties of self-similar processes of multiservice traffic in IP networks. On the basis of the analytical modeling the impact of self-similarity properties on the QoS (Quality of Service) parameters (delays and losses) is shown. The results of simulation are presented.


Loss Probability Real Time Traffic Dynamic Bandwidth Allocation Elastic Traffic Jitter Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the Self-Similar Nature of Ethernet Traffic (extended version). IEEE/ACM Transactions of Networking (1994)Google Scholar
  2. 2.
    Riedi, R., Willinger, W.: Toward an Improved Understanding of Network Traffic Dynamics, Self-Similar Network Traffic and Performance Evaluation (2000)Google Scholar
  3. 3.
    Feldman, A., Whitt, W.: Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network Performance Models. Performance Evaluation 31(8), 963–976 (1998)Google Scholar
  4. 4.
    Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a Fundamental Result in Self-Similar Traffic Modeling. Computer Communication Review 27, 5–23 (1997)CrossRefGoogle Scholar
  5. 5.
    Taqqu, M., Willinger, W., Sherman, R.: On-Off Models for Generating Long-Range Dependence. Computer Communication Review 27 (1997)Google Scholar
  6. 6.
    Crovella, M., Taqqu, M., Bestavros, A.: Heavy-Tailed Probability Distribution in World Wide Web. A Practical Guide to Heavy Tails: Statistical Techniques and Applications (1998)Google Scholar
  7. 7.
    Park, K., Tuan, T.: Multiple Time Scale Congestion Control for Self-Similar Network Traffic. Performance Evaluation (1999)Google Scholar
  8. 8.
    Park, K., Willinger, W.: Self-Similar Network Traffic: An Overview. In: Self-Similar Network Traffic and Performance Evaluation. Wiley-Interscience, Chichester (2000)CrossRefGoogle Scholar
  9. 9.
    Crovella, M., Barford, P.: Measuring Web Performance in the Wide Area. ACM Performance Evaluation Review 27(2), 37–48 (1999)CrossRefGoogle Scholar
  10. 10.
    Crovella, M., Matta, I., Guo, L.: How Does TCP Generate Pseudo-Self-Similarly? In: Proc. the International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS 2001), Cincinnati, OH (August 2001)Google Scholar
  11. 11.
    Willinger, W., Taqqu, M., Sherman, R., Wilson, D.: Self-Similarity through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE/ACM Transactions on Networking 5(1) (1997)Google Scholar
  12. 12.
    Erramili, A., Narayan, O., Willinger, W.: Experimental Queuing Analysis with Long-Range Dependent Traffic. IEEE/ACM Transaction on Networking 4(2), 209–223 (1996)CrossRefGoogle Scholar
  13. 13.
    Sadek, N., Khotanzad, A., Chen, T.: ATM Dynamic Bandwidth Allocation Using F-ARIMA Prediction Model, Department of Electrical Engineering, Southern Methodist University, Dallas, USA (2003)Google Scholar
  14. 14.
    Park, K., Kim, G., Crovella, M.: On the Relationship between File Sizes, Transport Protocols and Self-Similar network Traffic. In: Proc. International Conference on Network Protocols, pp. 171–180 (October 1996)Google Scholar
  15. 15.
    V. Almeida, A. de Oliveira. On the Fractal Nature of WWW and Its Application to Cache Modeling. In: Anais do XXIII Seminбrio Integrado de Software e Hardware do XVI Congresso da SBC, Recife, Agosto de 1996, Brasil (1996)Google Scholar
  16. 16.
    Downey, A.B.: Lognormal and Pareto Distributions in the Internet (2003),
  17. 17.
    Dang, T. D., Sonkoly, B., Molnбr.: Fractal Analysis and Modelling of VoIP Traffic, In: NETWORKS 2004, Vienna, Austria, June 13-16, (2004) Google Scholar
  18. 18.
    Molnбr, S., Dang, T.D.: Scaling Analysis of IP Traffic Components, ITC Specialist Seminar on IP Traffic Measurement, Modeling and Management, Monterey, CA, USA, September 18-20 (2000)Google Scholar
  19. 19.
    Paxson, V., Floyd, S.: Wide-Area Traffic: The Failure of Poisson Modeling // Lawrence Berkeley Laboratory and EECS Division, University of California, Berkeley (1995)Google Scholar
  20. 20.
    Simonina, O.A.: Qos Parameters Estimation of Next Generation Networks // 56-th NTK PPS/SPbGUT. SPb (2004) (in Russian)Google Scholar
  21. 21.
    Hooghiemstra, G., Van Mieghem, P.: Delay Distributions on Fixed Internet Paths, Delft University of Technology, report20011020 (2001)Google Scholar
  22. 22.
    Tsibakov, B.S.: Teletraffic Pattern in the Terms of Self-Similar Random Process // Radiotehnika, No. 5 (1999) (in Russian)Google Scholar
  23. 23.
    Kleinrock, L.: Communication Nets; Stochastic Message Flow and Delay. McGraw-Hill Book Company, New York (1964)MATHGoogle Scholar
  24. 24.
    O.I. Sheluhin, A.M. Tenyakshev, A.V. Osin. Fractal Processes in Telecommunications. – M.: Radiotehnika (2003) (in Russian) Google Scholar
  25. 25.
    Aven, O.I., Gurin, N.N., Kogan, Y.A.: Quality Estimation and Optimization of Computing Systems. – M. Nauka (1982) (in Russian)Google Scholar
  26. 26.
    Zeliger, N.B., Chugreev, O.S., Yanovsky, G.G.: Design of Networks and Discrete Information Communication Systems – M. Radio i svjaz (1984) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anatoly M. Galkin
    • 1
  • Olga A. Simonina
    • 1
  • Gennady G. Yanovsky
    • 1
  1. 1.Telecommunication Networks DepartmentState University of TelecommunicationsSt.PetersburgRussia

Personalised recommendations